The Nano-Cutting Mechanism Research of Polysilicon Based on Molecular Dynamics

2013 ◽  
Vol 690-693 ◽  
pp. 2559-2562
Author(s):  
Ying Zhu ◽  
Shun He Qi ◽  
Zhi Xiang ◽  
Ling Ling Xie

Molecular dynamics model of the polysilicon material under the micro/nanoscale is established by using molecular dynamics method, make variety of the typical defects distribute to the polysilicon model reasonable and relax the simulation model, obtain the system potential energy curves in the relaxation process and the atomic location figure after the relaxation. Conduct molecular dynamics simulation of nanometric cutting process relying on the development of simulation program, get instant atom position image and draw the cutting force curve. Discusses the typical defects impact on the polycrystalline silicon nanometric cutting process, those mainly include cutting force changes in the cutting process, potential energy changes and processed surface quality etc.

2014 ◽  
Vol 536-537 ◽  
pp. 1431-1434 ◽  
Author(s):  
Ying Zhu ◽  
Yin Cheng Zhang ◽  
Shun He Qi ◽  
Zhi Xiang

Based on the molecular dynamics (MD) theory, in this article, we made a simulation study on titanium nanometric cutting process at different cutting depths, and analyzed the changes of the cutting depth to the effects on the work piece morphology, system potential energy, cutting force and work piece temperature in this titanium nanometric cutting process. The results show that with the increase of the cutting depth, system potential energy, cutting force and work piece temperature will increase correspondingly while the surface quality of machined work piece will decrease.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 633-638
Author(s):  
Q. X. PEI ◽  
C. LU ◽  
F. Z. FANG ◽  
H. WU

Nanoscale machining involves changes in only a few atomic layers at the surface. Molecular dynamics (MD) simulation can play a significant role in addressing a number of machining problems at the atomic scale. In this paper, we employed MD simulations to study the nanometric cutting process of single crystal copper. Instead of the widely used Morse potential, we used the Embedded Atom Method (EAM) potential for this study. The simulations were carried out for various tool geometries at different cutting speeds. Attention was paid to the cutting chip formation, the cutting surface morphology and the cutting force. The MD simulation results show that both the tool geometry and the cutting speed have great influence on the chip formation, the smoothness of machined surface and the cutting force.


2014 ◽  
Vol 697 ◽  
pp. 369-372 ◽  
Author(s):  
Ying Zhu ◽  
Zhi Xiang ◽  
Ling Ling Xie ◽  
Yin Cheng Zhang ◽  
Jian Cun Zhao

The current status of nanofabrication briefly reviewed, then molecular dynamics model of poly-silicon is founded on micro-nanoscale with molecular dynamics method, in which several typical defects are distributed reasonably. Molecular dynamics simulation of nanocutting process is conducted according to the simulation model. Keeping the other conditions remain unchanged, simulating calculation is made by reasonably changing cutting parameters such as cutting velocity and cutting depth, through which the changes of the morphology structure of workpiece surface,cutting force and system potential energy are observed. The simulation results are compared and studied, then the influence laws of each parameter on morphology structure of workpiece surface, cutting force and system potential energy are analyzed. Based on this, the mechanism of poly-silicon nanomachining is discussed .


2021 ◽  
Vol 23 (9) ◽  
pp. 5236-5243
Author(s):  
Ying Hu ◽  
Chao Xu ◽  
Linfeng Ye ◽  
Feng Long Gu ◽  
Chaoyuan Zhu

Global switching on-the-fly trajectory surface hopping molecular dynamics simulation was performed on the accurate TD-B3LYP/6-31G* potential energy surfaces for E-to-Z and Z-to-E photoisomerization of dMe-OMe-NAIP up to S1(ππ*) excitation.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Junye Li ◽  
Wenqing Meng ◽  
Kun Dong ◽  
Xinming Zhang ◽  
Weihong Zhao

Author(s):  
Qiang Zhao ◽  
Yang Li ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

The sputtering of graphite due to the bombardment of hydrogen isotopes is one of the critical issues in successfully using graphite in the fusion environment. In this work, we use molecular dynamics method to simulate the sputtering by using the LAMMPS. Calculation results show that the peak values of the sputtering yield are located between 25 eV to 50 eV. After the energy of 25 eV, the higher incident energy cause the lower carbon sputtering yield. The temperature which is most likely to sputter is about 800 K for hydrogen, deuterium and tritium. Before the 800 K, the sputtering rates increase when the temperature increase. After the 800 K, they decrease with the temperature increase. Under the same temperature and energy, the sputtering rate of tritium is bigger than that of deuterium, the sputtering rate of deuterium is bigger than that of hydrogen.


2016 ◽  
Vol 18 (26) ◽  
pp. 17461-17469 ◽  
Author(s):  
Z. Y. Hou ◽  
K. J. Dong ◽  
Z. A. Tian ◽  
R. S. Liu ◽  
Z. Wang ◽  
...  

The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method.


Sign in / Sign up

Export Citation Format

Share Document