Molecular Dynamics Study on the Impact of the Cutting Depth to the Titanium Nanometric Cutting

2014 ◽  
Vol 536-537 ◽  
pp. 1431-1434 ◽  
Author(s):  
Ying Zhu ◽  
Yin Cheng Zhang ◽  
Shun He Qi ◽  
Zhi Xiang

Based on the molecular dynamics (MD) theory, in this article, we made a simulation study on titanium nanometric cutting process at different cutting depths, and analyzed the changes of the cutting depth to the effects on the work piece morphology, system potential energy, cutting force and work piece temperature in this titanium nanometric cutting process. The results show that with the increase of the cutting depth, system potential energy, cutting force and work piece temperature will increase correspondingly while the surface quality of machined work piece will decrease.

2013 ◽  
Vol 690-693 ◽  
pp. 2559-2562
Author(s):  
Ying Zhu ◽  
Shun He Qi ◽  
Zhi Xiang ◽  
Ling Ling Xie

Molecular dynamics model of the polysilicon material under the micro/nanoscale is established by using molecular dynamics method, make variety of the typical defects distribute to the polysilicon model reasonable and relax the simulation model, obtain the system potential energy curves in the relaxation process and the atomic location figure after the relaxation. Conduct molecular dynamics simulation of nanometric cutting process relying on the development of simulation program, get instant atom position image and draw the cutting force curve. Discusses the typical defects impact on the polycrystalline silicon nanometric cutting process, those mainly include cutting force changes in the cutting process, potential energy changes and processed surface quality etc.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 633-638
Author(s):  
Q. X. PEI ◽  
C. LU ◽  
F. Z. FANG ◽  
H. WU

Nanoscale machining involves changes in only a few atomic layers at the surface. Molecular dynamics (MD) simulation can play a significant role in addressing a number of machining problems at the atomic scale. In this paper, we employed MD simulations to study the nanometric cutting process of single crystal copper. Instead of the widely used Morse potential, we used the Embedded Atom Method (EAM) potential for this study. The simulations were carried out for various tool geometries at different cutting speeds. Attention was paid to the cutting chip formation, the cutting surface morphology and the cutting force. The MD simulation results show that both the tool geometry and the cutting speed have great influence on the chip formation, the smoothness of machined surface and the cutting force.


2012 ◽  
Vol 516 ◽  
pp. 13-18 ◽  
Author(s):  
Ming Jun Chen ◽  
Gao Bo Xiao ◽  
Dan Li ◽  
Chun Ya Wu

The hierarchical approach of multi-scale modelling was adopted to study the nanometric cutting process of calcium fluoride. Then fly cutting experiments of CaF2 were performed to analyze the influence of cutting speed upon the surface roughness of CaF2. The results of FEM simulations show that larger negative rake angle and larger cutting edge radius lead to lower tensile stress in the cutting region. Tangential cutting force will first increase with an increase of negative rake angle and cutting edge radius, and then start to decrease with them. The tensile stress in the cutting region will increase with cutting depth at first, and then become stable when it reaches a certain extent. The specific cutting force increases rapidly with decrease of cutting depth, showing an obvious size effect. Within the range of cutting speeds adopted in the simulations, cutting speed has little influence on the tensile stress in the cutting region. And the results of fly cutting experiments show that cutting speed has little influence on the surface roughness of a machined surface under the cutting speeds adopted. This verifies the validity of the simulation result to some extent.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Junye Li ◽  
Wenqing Meng ◽  
Kun Dong ◽  
Xinming Zhang ◽  
Weihong Zhao

2018 ◽  
Vol 8 (12) ◽  
pp. 2380 ◽  
Author(s):  
Miaocao Wang ◽  
Fulong Zhu ◽  
Yixin Xu ◽  
Sheng Liu

Silicon carbide (SiC), especially 4H-SiC, is an ideal semiconductor in power electronics due to its outstanding electrical and thermal properties. It has high hardness and brittleness, which makes it difficult to machine. To understand the nanomachining characteristics of off-axis 4H-SiC and provide suggestions on 4H-SiC substrate thinning, the nanocutting process of 4 ∘ off-axis 4H-SiC was simulated by molecular dynamics. The results showed that the stacking fault induced by cutting propagates in the basal plane, and propagates deep into the SiC workpiece when the angle between the cutting direction and the c-axis is smaller than 90 ∘ . Bond reconstruction is found near the slip plane. The cutting depth is also a key parameter in nanocutting. With smaller cutting depth, machining is more like scratching than cutting. With larger cutting depth, more atoms are involved in the cutting, cutting force and workpiece temperature are higher, and more defects exist.


2010 ◽  
Vol 97-101 ◽  
pp. 3104-3107 ◽  
Author(s):  
Yu Lan Tang ◽  
Qiang Liu ◽  
Yu Hou Wu ◽  
Ke Zhang

A three-dimensional model of molecular dynamics (MD) was employed to study the nanometric cutting mechanism of monocrystalline copper. The model included the utilization of the Morse potential function to simulate the interatomic force. By analyses of the snapshots of the various stages of the nanometric cutting process, the generation and propagation of the dislocations around the tool are observed. Some of these dislocations are observed to travel through the entire depth of the workpiece. Those that could most escape completely through the machined surface due to elastic recovery were found to introduce atom step on the machined surface. By analyses of the cutting forces during the entire nanometric cutting process, significant fluctuations are observed in the cutting force curves. The stress distribution plots of the various stages of the nanometric cutting process show that the mechanism of chip formation is significantly different from the conventional shear ahead of the tool in the case of a polycrystalline material. Most atoms ahead of tool are compressed, but forces of one or two layers atoms contact the cutting tool are tensile. With the chip formation, a small tensile zone ahead of tool generates in the compression zone and moves with the tool.


2008 ◽  
Vol 33-37 ◽  
pp. 963-968
Author(s):  
Chun Yi Chu ◽  
Chung Ming Tan ◽  
Yung Chuan Chiou

The stress induced in a workpiece under nanocutting are analyzed by an atomic-scale model approach that is based on the energy minimization. Certain aspects of the deformation evolution during the process of nanocutting are addressed. This method needs less computational efforts than traditional molecular dynamics (MD) calculations. The simulation results demonstrate that the microscopic cutting deformation mechanism in the nanocutting process can be regarded as the instability of the crystalline structure in our atomistic simulations and the surface quality of the finished workpiece varies with the cutting depth.


Author(s):  
Seyed Vahid Hosseini ◽  
Mehrdad Vahdati

Recently, the development of machine tools and sub-micron positioning control systems has brought the minimum thickness of ultra-precision cutting to less than 1 nm. The conventional continuum based method (FEM) becomes impossible to use for numerical analysis. As an alternative method, molecular dynamics (MD) method is significantly implemented in the field of nano-machining to investigate cutting mechanism. In this paper, firstly, molecular dynamics simulations of the nanometric cutting of single-crystal copper were performed applying a pin tool. The model was solved with both Morse and Embedded Atom Method (EAM) potential functions to simulate the interatomic force between the work piece and a rigid tool. The nature of material removal, chip formation, and frictional forces were simulated. In order to investigate the coefficient resistance (the ratio of the cutting force to the thrust force), some MD simulations also carried for various cutting velocity and cutting depths. The results show that the Morse potential and EAM method have some difference to model tool forces and frictional resistance. Also, surface properties and atomic displacement in each of these potential functions have some discrepancy. In addition, cutting and trust forces increase with the cutting velocity and the depth of cut, however the effect of cutting speed is not very significant. Finally the value of frictional resistance is not changed with similar tool for various cutting speeds.


2010 ◽  
Vol 256 (23) ◽  
pp. 7160-7165 ◽  
Author(s):  
Peng-zhe Zhu ◽  
Yuan-zhong Hu ◽  
Tian-bao Ma ◽  
Hui Wang

Sign in / Sign up

Export Citation Format

Share Document