The Finite Element Analysis of Thin-Wall Ribbed Square Steel Tube Recycled Concrete Bias Column Mechanical Properties

2013 ◽  
Vol 690-693 ◽  
pp. 914-918
Author(s):  
Yue Hong Li ◽  
Bai Shou Li

In order to study ribbed thin-walled square steel tube recycled concrete eccentric compression column, used the mechanical properties of ANSYS software, conduct the nonlinear numerical simulation. The analysis of the ribbed and ribbed, recycled coarse aggregate replacement ratio and eccentricity, three factors on the eccentric compression column mechanical performance, proved the thin-walled square steel tube that recycled concrete composite column the effectiveness of three-dimensional finite element simulation. The result shows that: when aggregate replace rate was 0%, ribbed specimen than not ribbed specimen axial displacement and displacement to the reduced to 5.77% and 2.33% respectively. When the aggregate replace rate was 50%, ribbed specimen than not ribbed specimen shaft voltage and bias displacement has been reduced by 6.53% and 4.22%; When the aggregate replace rate was 0%, ribbed specimen than not ribbed specimen axis pressure bearing capacity and bias the bearing capacity increased by 1.21% and 2.74%. When the aggregate replace rate was 50%, ribbed specimen than not ribbed specimen axis pressure bearing capacity and bias the ultimate bearing capacity increased by 1.04% and 2.82%.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
He Zhang ◽  
Kai Wu ◽  
Chao Xu ◽  
Lijian Ren ◽  
Feng Chen

Two columns of thin-walled concrete-filled steel tubes (CFSTs), in which tube seams are connected by self-tapping screws, are axial compression tested and FEM simulated; the influence of local buckling on the column compression bearing capacity is discussed. Failure modes of square thin-wall CFST columns are, first, steel tube plate buckling and then the collapse of steel and concrete in some corner edge areas. Interaction between concrete and steel makes the column continue to withstand higher forces after buckling appears. A large deflection analysis for tube elastic buckling reflects that equivalent uniform stress of the steel plate in the buckling area can reach yield stress and that steel can supply enough designing stress. Aiming at failure modes of square thin-walled CFST columns, a B-type section is proposed as an improvement scheme. Comparing the analysis results, the B-type section can address both the problems of corner collapse and steel plate buckling. This new type section can better make full use of the stress of the concrete material and the steel material; this type section can also increase the compression bearing capacity of the column.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1098 ◽  
Author(s):  
Xuetao Lyu ◽  
Yang Xu ◽  
Qian Xu ◽  
Yang Yu

This study investigated the axial compressive performance of six thin-walled concrete-filled steel tube (CFST) square column specimens with steel bar stiffeners and two non-stiffened specimens at constant temperatures of 20 °C, 100 °C, 200 °C, 400 °C, 600 °C and 800 °C. The mechanical properties of the specimens at different temperatures were analyzed in terms of the ultimate bearing capacity, failure mode, and load–displacement curve. The experiment results show that at high temperature, even though the mechanical properties of the specimens declined, leading to a decrease of the ultimate bearing capacity, the ductility and deformation capacity of the specimens improved inversely. Based on finite element software ABAQUS, numerical models were developed to calculate both temperature and mechanical fields, the results of which were in good agreement with experimental results. Then, the stress mechanism of eight specimens was analyzed using established numerical models. The analysis results show that with the increase of temperature, the longitudinal stress gradient of the concrete in the specimen column increases while the stress value decreases. The lateral restraint of the stiffeners is capable of restraining the steel outer buckling and enhancing the restraint effect on the concrete.


2014 ◽  
Vol 578-579 ◽  
pp. 269-273
Author(s):  
Bing Li ◽  
Shuang Meng ◽  
Wei Hao Wang

The objective of this paper is to provide the references through finite element analysis for steel tube concrete beams bearing capacity settlement. The paper verified the correctness of the constitutive relation of concrete, the correctness and the model through the establishment of the concrete damaged plasticity model with recycled concrete details in the finite element analysis software ABAQUS. Then the stress characteristics of steel pipe concrete beam in bending condition under different substitution rate could be found through model calculation. The result is that the mid span bending - strain curve from simulation agreed to the experimental results, and the model is proved correct. Finally it came to the conclusions. Other things being equal, the recycled concrete filled square tube changed a lot in bending state when the substitution rate grows, but it didn’t occur to the circular one. In the meantime, the writer proposed the conjecture on the bearing capacity calculation of the two types of structure.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


2013 ◽  
Vol 690-693 ◽  
pp. 881-885 ◽  
Author(s):  
Ai Hua Jin ◽  
Bai Shou Li

An axial compression test has been done on 12 short columns, ribbed and spiral stirrup short column filled with recycled demolished concrete lump to study the axial compression variable characteristics and ultimate bearing capacity of thin-wall T-shaped steel tube column filled with recycled demolished concrete lump. The load displacement curve has been analyzed, ultimate bearing capacity of standard formula has been compared and the reliability of finite element numerical simulation and been discussed. The result shown that the form of steel tube embedded with structural members has more effectively increased the tensility, delayed bending occurrence, enhanced the effect of restraint of core concrete and increased the ultimate bearing capacity than that the form of plain section form. The ultimate bearing capacity of ribbed form has been increased by 16.76% than non-ribbed form,and the ultimate bearing capacity of spiral stirrup form has been increased by 11.98 % than non-spiral stirrup form. The finite element simulation and the test result was identical properly.


2014 ◽  
Vol 578-579 ◽  
pp. 335-339 ◽  
Author(s):  
Guo Chang Li ◽  
Bing Zhou ◽  
Jiang Hua Pan

The new composite structure concrete-filled square steel tube (CFST) column with inner CFRP profiles is proposed. A finite element model is presented to investigate the mechanical behavior of CFST short columns with internal CFRP profiles subjected to axial compression using ABAQUS based on reasonable constitutive models of materials. In a addition, the content of CFRP profiles and width thickness ratio of steel tube’ effect are considered on mechanical properties of the column. Based on the model, the whole stage of axial compression of the short columns, failure mode and the stress mechanism of the ultimate bearing capacity state are calculated and analyzed.


2013 ◽  
Vol 690-693 ◽  
pp. 678-681
Author(s):  
Li Sha Wang ◽  
Bai Shou Li

For the problem of square concrete-filled steel tube (CFST) under the action of axial pressure, concrete received local compression and buckling occurred in the application of thin-walled steel pipe.Using built-in spiral reinforcement to strengthen the constraints of thin-walled square steel tube to core concrete. And by using ANSYS program established the built-in spiral reinforcement of thin-walled square steel tube concrete composite column 3 d finite element model, and the results show that spiral reinforcement strengthen the constraint effect, increase the ultimate bearing capacity of the composite columns of square steel tube by 7.41%; And with stiffening rib and rod measures were compared, built-in spiral ripe construction is convenient, easily applied.


2013 ◽  
Vol 838-841 ◽  
pp. 510-513
Author(s):  
Chun Li Zhou ◽  
Ru Yang ◽  
Xue Ying Tang

Prestressed concrete-filled square steel tube truss is the kind of truss whose upper chords and lower chords are respectively concrete-filled square steel tube and prestressed square steel tube. Four truss models as square steel tube truss, concrete-filled square steel tube truss, prestressed square steel tube truss and prestressed concrete-filled square steel tube truss were analysed by ANSYS, each of those truss models’ span has three variations. The result shows that the bar sections’ strength of square steel tube truss and concrete-filled square steel tube truss are far from reaching their design strength when the allowable values of deflection has reachedl//400. Unlike the cases described above, when the bar sections’ strength of prestressed square steel tube truss and prestressed concrete-filled square steel tube truss has reached their design strength, their load-bearing capacity is 1 or 1.5 times higher than those cases above and their deflection has not reached the allowable values.


2011 ◽  
Vol 255-260 ◽  
pp. 118-122
Author(s):  
Bin Wang

This paper presents an experimental investigation of the mechanic behavior of 9 concrete-filled square steel tube columns (CFSST) subjected to eccentric loading. The primary parameters of the specimens are eccentricity ratios, slenderness ratios and concrete strength. The results showed that the eccentricity ratios and slenderness ratios are the primary factors to influence the load-bearing capacity of CFSST columns, with the increase of eccentricity ratios and slenderness ratios, the limit load-bearing capacity reduced gradually. The influence of concrete strength to load-bearing capacity decreased gradually with the increase of eccentricity ratios and slenderness ratios.


2013 ◽  
Vol 351-352 ◽  
pp. 241-245
Author(s):  
Chun Fu Jin ◽  
Peng Niu ◽  
Yong Sheng Zhao

Based on Ježek method of computing the elastic-plastic buckling of the member under the axial compressive load and the bending moment, considering the initial geometric imperfection, the analytical expressions of calculating the ultimate load of buckling about the neutral axis with the maximum moment of inertia for a square steel tube member with flange outsides wrapped by carbon fibre are derived. Using the elastic-plastic finite element method and the theory of nonlinear buckling, the impact of the initial geometric imperfection on the square steel tube steel member wrapped by carbon fibre under the axial compressive load and the bending moment are analyzed and the numerical solutions of ultimate bearing capacity are obtained. By compared with the values of the finite element method (FEM), it shows that the analytical method in this paper is valid. Compared the reinforced effect of the carbon fibrer to the perfection member with the defect member, we find that the former is higher than the latter. The results of the example also show that the presence of initial geometric imperfection reduces the ultimate bearing capacity of the steel member to a great extent. The influence of defect member gradually decreases when the given moment rises.


Sign in / Sign up

Export Citation Format

Share Document