Finite Element Analysis of Recycled Concrete Filled Steel Tube in Bending State

2014 ◽  
Vol 578-579 ◽  
pp. 269-273
Author(s):  
Bing Li ◽  
Shuang Meng ◽  
Wei Hao Wang

The objective of this paper is to provide the references through finite element analysis for steel tube concrete beams bearing capacity settlement. The paper verified the correctness of the constitutive relation of concrete, the correctness and the model through the establishment of the concrete damaged plasticity model with recycled concrete details in the finite element analysis software ABAQUS. Then the stress characteristics of steel pipe concrete beam in bending condition under different substitution rate could be found through model calculation. The result is that the mid span bending - strain curve from simulation agreed to the experimental results, and the model is proved correct. Finally it came to the conclusions. Other things being equal, the recycled concrete filled square tube changed a lot in bending state when the substitution rate grows, but it didn’t occur to the circular one. In the meantime, the writer proposed the conjecture on the bearing capacity calculation of the two types of structure.

2011 ◽  
Vol 2-3 ◽  
pp. 861-864
Author(s):  
Ling Ling Li ◽  
Guang Pu Xu ◽  
Bing Bing Cui

The mechanism withstands 220t high temperature molten steel. In case of damage, molten steel pours. There will be major security incidents. Therefore, it is necessary to calculate carrying capacity of the mechanism. However, the part of components of the mechanism is made up of a crisscross of steel plate. This is used to withstand the bending and stretching. If we rely on traditional mechanical analysis, a large number of simplifying must be adopted, and accuracy of the calculation can be reduced. Therefore, this paper uses the COSMOSWorks Plug-in of SolidWorks software to carry out finite element calculation of whole machine for the mechanism. It avoids these shortcomings mentioned above. And this makes bearing capacity calculation to be more close to the actual circumstances. And the results show that: (1) the maximum stress of parts in the mechanism is only 52.8Mpa and much less than permissible stresses of its materials. As a result, the mechanism has sufficient bearing capacity. (2) The maximum displacement of whole machine is 2.637 mm. And the displacement will cause dip angle when lifting molten steel and it is less than its allowable stiffness. Therefore, the deformation is to meet requirements for the mechanism. In conclusion, the finite element analysis of the whole machine avoids complex force analysis and simplification of structure. The calculation has high accuracy. It is one of effective methods in the design of intensity and stiffness of complex structures.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


2014 ◽  
Vol 525 ◽  
pp. 568-572
Author(s):  
Yang Feng Wu ◽  
Hong Mei Zhang

A new composite strengthening method that the CFST short column was strengthened with concrete filled steel tube was presented. Through the finite element analysis of five specimens with strengthening circular concrete filled steel tube columns and a specimen without strengthening circular concrete filled steel tube to explore the impact of the outer layer of concrete strength grade, external pipe wall thickness for the ultimate bearing capacity of concrete filled steel tube columns. The results show that with the increase of the outer pipe wall thickness, double concrete filled steel tube column yield strength and ultimate strength have increased. As the outer concrete strength grade increased as the specimen bearing capacity increased. When the concrete strength grade greater than C40, the improvement of concrete strength for specimen ultimate bearing capacity is not great.


2014 ◽  
Vol 578-579 ◽  
pp. 263-268
Author(s):  
Bing Li ◽  
Qi Zhang ◽  
Shuang Meng

The paper achieved the nonlinear analysis of bearing capacity of recycled concrete filled steel tubular short columns by using finite element analysis software ABAQUS. In order to meet the finite element analysis the writer put forward the modified formula of recycled concrete constitutive relationship of core, and elaborate d the contact at the interface of steel tube and the core concrete and related modeling points. Finally the load-deformation curves of the finite element analysis and test results coincide well. It indicates that the modified formula of recycled concrete constitutive relationship can better meet the requirements of analyzing bearing capacity of recycled concrete filled circular steel tubular columns under compressive Loading by using ABAQUS. Through the simulation experiment, it is useful for us to obtain the ultimate reliable bearing capacity of the similar structure member.


2015 ◽  
Vol 727-728 ◽  
pp. 269-272
Author(s):  
Jing Hai Zhou ◽  
Qing Zhe Lin ◽  
Yun Cong Shu

Through the ABAQUS software to simulate the compression performance of waste fiber recycled concrete column of the different fiber length and amount of fiber volume under the monotonic load, the ultimate carrying capacity and load - concrete strain curve of waste fiber recycled concrete eccentric compression column are concluded, and compare them with experimental results. The results show that the finite element analysis results and experimental results are basically in agreement with, which proves the feasibility and correctness of the finite element analysis.


2012 ◽  
Vol 588-589 ◽  
pp. 212-216
Author(s):  
Rui Jing ◽  
Yong Sheng Zhang

With the help of large general finite element analysis software ANSYS, under different parameters, this paper will have a finite element analysis of bearing capacity on circular steel tube compile short column filled with steel reinforced concrete(STCSRC).In the paper,it uses separate models to calculate and analyze.Considering the nonlinear constitutive relation of steel and concrete and determining the type of unit,it is shown that stress distribution and load-displacement curve of specimen under the effect of different parameters.According to the curve and data,analysis results of bearing capacity of specimen have been shown that bearing capacity of STCSRC will increase with concrete strength increasing and it also will increase with steel rate increasing under axial load.Because of core concrete working together with steel tube and angle steel,it can significantly improve the bearing capacity of composite columns, slow down and inhibit shearing inclined cracks occur in the core concrete and develop,and improve the ductility of columns.


2010 ◽  
Vol 163-167 ◽  
pp. 670-675
Author(s):  
Jiang Tao Yu ◽  
Ke Quan Yu ◽  
Bo Tang

Four groups (12 in total) of welded hollow spherical joints with ribbed stiffener were tested under uniaxial loads in this paper. With the adoption of elasto-plastic model and consideration of geometric and material nonlinearity, the whole loading process of the specimens was simulated by ABAQUS. Through combining the test data and computing results, two recommendations used to quantitatively determine the ultimate failure load of spherical joint in test are proposed. The relationships between bearing capacity and various influence factors, which include the thickness and diameter of hollow sphere, diameter of steel tube are analyzed and illustrated at the end of this paper.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


2020 ◽  
Vol 165 ◽  
pp. 06018
Author(s):  
Tan Wang ◽  
Kun Luo ◽  
Kuo Yuan ◽  
Shuai feng Yuan

With the rapid development of the construction industry, the country has a higher demand for scaffolding engineering, so it is very necessary to develop and promote the application of wheel buckle scaffolding. Steel tube scaffold with wheel buckle has the characteristics of clear transmission and good mechanical performance. In order to study the structural performance of steel tubular scaffolding with wheel buckle, the single span three-step element frame was tested. The failure mode and ultimate bearing capacity of the frame are obtained. The finite element software Sap2000 was used to conduct 3d modeling and linear buckling analysis of scaffolds in the test. The results of experiments and finite element analysis show that the failure type of steel tubular scaffolding is the overall torsional instability failure. The connection stiffness at the joint of the diagonal brace fastener has a great influence on the wheel-buckle scaffold. The diagonal brace has obvious influence on the bearing capacity of steel tubular scaffolding body with buckles.


Sign in / Sign up

Export Citation Format

Share Document