Design of Fuzzy PID Controller Based on Adaptive Particle Swarm Optimization with Cloud Theory

2013 ◽  
Vol 706-708 ◽  
pp. 720-723
Author(s):  
Ming Feng Ying ◽  
Li Xin Zai ◽  
Hai Xiang Wang

Researching optimization problems of controller is need of industrial process control ,in which PID controller is widely used,which its parameters can be equivalent to optimization problems. In the industrial control the PID controller is widely used in excitation control system to improve its control performance.In order to find the optimal PID controller parameters effectively ,a kind of Adaptive Particle Swarm Optimization method (CAPSO) based on Cloud Theory is applied to fuzzy PID controller. Through the establishment of particle swarm algorithm of fuzzy PID controller parameters optimization model, which it can be used to optimize the membership function of fuzzy PID controller. Particle code adopts real coding. Particle dimension is related with the number of the input variables divided by fuzzy set and the number of control rules of whole fuzzy control system, thus the parameters of PID control are optimized on real time. The result from the simulation shows that compared with PID control and fuzzy control this system has several advantages which are small overshoots ,fast response ,and good stable performance to improve the control performance of excitation control system.

2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2017 ◽  
Vol 6 (2) ◽  
pp. 42-63 ◽  
Author(s):  
Ajit Kumar Barisal ◽  
Tapas Kumar Panigrahi ◽  
Somanath Mishra

This article presents a hybrid PSO with Levy flight algorithm (LFPSO) for optimization of the PID controllers and employed in automatic generation control (AGC) of nonlinear power system. The superiority of the proposed LFPSO approach has been demonstrated with comparing to recently published Lozi map-based chaotic optimization algorithm (LCOA) and Particle swarm optimization to solve load-frequency control (LFC) problem. It is found that the proposed LFPSO method has robust dynamic behavior in terms of settling times, overshoots and undershoots by varying the system parameters and loading conditions from their nominal values as well as size and locations of disturbance. Secondly, a three-area thermal power system is considered with nonlinear as Generation Rate Constraints (GRC) and outperforms to the results of Bacteria Foraging algorithm based integral controller as well as hybrid Differential Evolution and Particle Swarm Optimization based fuzzy PID controller for the similar power system. Finally, the proficiency of the proposed controller is also verified by random load patterns.


2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


2020 ◽  
Vol 22 (7) ◽  
pp. 2163-2187
Author(s):  
Nguyen Dinh Phu ◽  
Nguyen Nhut Hung ◽  
Ali Ahmadian ◽  
Norazak Senu

2009 ◽  
Vol 16-19 ◽  
pp. 145-149 ◽  
Author(s):  
Xiao Yan Song ◽  
Qing Jie Yang ◽  
Xue Ming Zhang ◽  
Qi Gao Feng

Although the traditional PID controller is widely used in many fields, the system parameters varying and external disturbances existing in the DC servo system will cause large overshoot or poor stability. To improve the performance of the PID controller, a compound servo control system combining the conventional PID control and the fuzzy control is presented to meet the demand of a vehicular antenna servo system in this paper. Incorporating the fuzzy control and the conventional PID control, this paper presents a design method of the fuzzy PID controller that is based on the fuzzy tuning rules and formed by integrating two above control ideas. Simulation results are presented to show the efficiency of the proposed controller. The practical control effect shows that the control system that adopts the fuzzy PID controller has better performance than that of the traditional PID control system, and meets the performance requirements of the servo system.


2014 ◽  
Vol 568-570 ◽  
pp. 1026-1030
Author(s):  
Xue Jin Bai ◽  
Yong Ming Qiao

Fast-steering mirror system demands higher accuracy and fast responding speed to track targets, but the conventional PID controllers cannot meet the demands. Instead, the fuzzy PID control can greatly improve the capturing and tracking capacities to high-speed dynamic targets. So we apply the fuzzy-PID controller in the positioning loop of the stabilized system, not only improving the transient process of the control system and decreasing the overshoot, but also enhancing the accuracy of tracking stabilization and response. At the end, simulations were performed to test the effectiveness of this method through the MATLAB platform.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8282
Author(s):  
Xiangping Liao ◽  
Shuai Yang ◽  
Dong Hu ◽  
Guofang Gong ◽  
Xiongbin Peng

As a rotational speed controller, a hydro-viscous clutch (HVC) is usually used in the constant pressure water supply system to maintain the needed water pressure constant. However, when the hydro-viscous clutch is working, it often suffers from the problem of output rotational speed fluctuation since the spool of proportional relief valve can easily get stuck. Consequently, water pressure will fluctuate too. A special pump control system of HVC was proposed based on the Fuzzy-PID controller for the purpose of reducing the fluctuation rate. The MATLAB simulation was carried out according to the mathematical model and the results show that the Fuzzy-PID control strategy is superior to traditional PID control. The corresponding experiment was performed and the result indicate that through applying the Fuzzy-PID controller based pump control system, the rotational output speed fluctuation of HVC can be inhibited from ±60π to ±6π rad/min, and the water pressure fluctuation is dropped from ±0.1 to ±0.002 MPa.


2009 ◽  
Vol 16-19 ◽  
pp. 150-154 ◽  
Author(s):  
Xue Ming Zhang ◽  
Gui Xiang Zhang ◽  
Feng Shao ◽  
Qing Jie Yang

The PID controllers can be seen in lots of fields, but some complex control system cannot be controlled to achieve a desired performance index. A design method of the fuzzy PID controller that is based on the fuzzy tuning rules and formed by integrating two above control ideas is proposed in this paper. The design procedure about fuzzy PID control can be divided two steps: the first step is to build the fuzzy tuning rules by analysis, and to obtain the parameters of PID controller by reasoning, and then the control action can be determined by the PID control law. The simulation results and the practical control effects show that the compound fuzzy PID controller has better performance than that of the conventional PID control system and meet the practical demands.


Sign in / Sign up

Export Citation Format

Share Document