Applications of Conventional Logs in Low Resistivity Contrast Tight Gas Reservoirs Identification

2013 ◽  
Vol 734-737 ◽  
pp. 41-44
Author(s):  
Xiao Peng Liu ◽  
Xiao Xin Hu ◽  
Xiao Ling Zhang ◽  
Rui Xu ◽  
Ling Ling Zhi

It’s a great challenge in identifying gas bearing formation from conventional logs in tight gas sandstones due to the low resistivity contrast caused by high irreducible water saturation. Based on the difference of the principles of three kinds of porosity logs (density, neutron and acoustic logs), three porosities difference method, three porosities ratio method, correlation of neutron and density logs and the overlap method of water-filled porosity and total porosity are introduced to identify tight gas bearing reservoirs. In gas bearing formations, the difference of three porosities is higher than 0.0, the ratio of three porosities is higher than 1.0, the correlation between density and neutron logs is negative, and the water filled porosities are lower than total porosities. On the contrary, in water saturated formations, the difference of three porosities is lower than 0.0, the ratio of three porosities is lower than 1.0, the correlation between density and neutron logs is positive, and the water filled porosities are overlapped with total porosities. Considering the complexity of in-suit formation, when the proposed identification criterion are mainly meet, the pore fluid should be determined, field examples show that the proposed techniques are applicable in tight gas formation identification.

2021 ◽  
Author(s):  
Nicolas Carrizo ◽  
◽  
Emiliano Santiago ◽  
Pablo Saldungaray ◽  
◽  
...  

The Río Neuquén field is located thirteen miles north west of Neuquén city, between Neuquén and Río Negro provinces, Argentina. Historically it has been a conventional oil producer, but some years ago it was converted to a tight gas producer targeting deeper reservoirs. The targeted geological formations are Lajas, which is already a known tight gas producer in the Neuquén basin, and the less known overlaying Punta Rosada formation, which is the main objective of the current work. Punta Rosada presents a diverse lithology, including shaly intervals separating multiple stacked reservoirs that grade from fine-grained sandstones to conglomerates. The reservoir pressure can change from the normal hydrostatic gradient to up to 50% of overpressure, there is little evidence of movable water. The key well in this study has a comprehensive set of open hole logs, including NMR and pulsed-neutron spectroscopy data, and it is supported by a full core study over a 597ft section in Punta Rosada. Additionally, data from several offset wells were used, containing sidewall cores and complete sets of electrical logs. This allowed to develop rock-calibrated mineral models, adjusting the clay volume with X-ray diffraction data, porosity and permeability with confined core measurements, and link the logs interpretation to dominant pore throat radius models from MICP Purcell tests at 60,000 psi. Several water saturation models were tested attempting to adjust the irreducible water saturation with NMR and Purcell tests at reservoir conditions. As a result, three hydraulic units were defined and characterized, identifying a strong correlation with lithofacies observed in cores and image logs. A cluster analysis model allowed the propagation of the facies to the rest of the wells (50). Finally, lithofacies were distributed in a full-field 3D model, guided by an elastic seismic inversion. In the main key well, in addition to the open hole logs and core data, a cased hole pulsed neutron log (PNL) was also acquired , which was used to develop algorithms to generate synthetic pseudo open hole logs such as bulk density and resistivity, integrated with the spectroscopy mineralogical information and other PNL data to perform the petrophysical evaluation. This enables the option to evaluate wells in contingency situations where open hole logs are not possible or are too risky, and also in planned situations to replace the open hole data in infill wells, saving considerable drilling rig time to reduce costs during this field development phase. Additionally, the calibrated cased hole model can be used in old wells already drilled and cased in the Punta Rosada formation. This paper explores the integration of different core and log measurements and explains the development of rock-calibrated petrophysical and rock types models for open and cased hole logs addressing the characterization challenges found in tight gas sand reservoirs. The results of this study will be crucial to optimize the development of a new producing horizon in a mature field.


2020 ◽  
Vol 17 (4) ◽  
pp. 1087-1100
Author(s):  
Yu-Liang Su ◽  
Jin-Gang Fu ◽  
Lei Li ◽  
Wen-Dong Wang ◽  
Atif Zafar ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5278
Author(s):  
Mianmo Meng ◽  
Yinghao Shen ◽  
Hongkui Ge ◽  
Xiaosong Xu ◽  
Yang Wu

Hydraulic fracturing becomes an essential method to develop tight gas. Under high injection pressure, fracturing fluid entering into the formation will reduce the flow channel. To investigate the influence of water saturation on gas flow behavior, this study conducted the gas relative permeability with water saturation and the flow rate with the pressure gradient at different water saturations. As the two dominant tight gas-bearing intervals, the Upper Paleozoic Taiyuan and Shihezi Formations deposited in Ordos Basin were selected because they are the target layers for holding vast tight gas. Median pore radius in the Taiyuan Formation is higher than the one in the Shihezi Formation, while the most probable seepage pore radius in the Taiyuan Formation is lower than the one in the Shihezi Formation. The average irreducible water saturation is 54.4% in the Taiyuan Formation and 61.6% in the Shihezi Formation, which indicates that the Taiyuan Formation has more movable water. The average critical gas saturation is 80.4% and 69.9% in these two formations, respectively, which indicates that the Shihezi Formation has more movable gas. Both critical gas saturation and irreducible water saturation have a negative relationship with porosity as well as permeability. At the same water saturation, the threshold gradient pressure of the Taiyuan Formation is higher than the one in the Shihezi Formation, which means that water saturation has a great influence on the Taiyuan Formation. Overall, compared with the Shihezi Formation, the Taiyuan Formation has a higher median pore size and movable water saturation, but water saturation has more influence on its gas flow capacity. Our research is conducive to understanding the effect of fracturing fluid filtration on the production of natural gas from tight reservoirs.


Author(s):  
Ting Li ◽  
◽  
Nicholas Drinkwater ◽  
Karen Whittlesey ◽  
Patrick Condon ◽  
...  

In this paper, we examine fluids interpretation techniques in a prolific oil field in offshore West Africa. A sourceless logging program, consisting of logging-while-drilling (LWD) nuclear magnetic resonance (NMR), resistivity, and formation tester, was chosen to log the reservoir section in 6.5-in. holes. The purpose of this study is to answer questions related to asset appraisal and development with these limited measurements. Core data available are porosity, permeability, water salinity, Archie m and n, and Dean-Stark Sw. A comparison of the core and NMR log indicates that NMR total porosity is not affected by hydrocarbon in the pore space. We use a statistical method called factor analysis to deconvolve independent fluid modes from the T2 distribution and pick the T2 cutoff. The NMR irreducible water saturation (Swirr) computed with this cutoff agrees with Dean-Stark Sw. Continuous Sw is calculated with Archie’s equation with lab-measured parameters and validated against Dean-Stark Sw above the transition zone. The Timur-Coates model is used to estimate matrix permeability. The first application of this interpretation workflow is to confirm the free-water level (FWL) derived from pressure gradients. We found the Sw profile largely controlled by heterogeneity in rock textures. The presence of both good and poor-quality rocks makes log-based FWL picking difficult. We use Swirr from NMR to indicate rock quality and simplify our final interpretation. The FWL found by sourceless log interpretation is consistent with the initial FWL found by pressure gradients. The second application is perforation design. Zones with good porosity and low mobile water volume are selected for perforation, and a safe distance is maintained from FWL. As a result, all producer wells exhibit zero water cut.


2012 ◽  
Vol 226-228 ◽  
pp. 2082-2087
Author(s):  
Chi Guan ◽  
Zhang Hua Lou ◽  
Hai Jian Xie

Mercury intrusion porosimetry injection is important in assessing microscopic pore structure of reservoirs. This paper introduces an estimated function for investigating the pore characteristic of western Sichuan tight gas reservoir based on VG model. Better correlations between the measured and estimated results have been obtained using VG model. Representative parameters were obtained by fitting the predictions of VG model to the experimental data, and then the estimated formulation was proposed for the studied reservoir. Correlation analysis of the parameters of VG model confirms that absolute permeability and irreducible water saturation are important in mercury injection porosimetry. The approach applied in this paper is helpful in investigating tight reservoirs, especially in the common cases when measurement is difficult to carry out, partly because of complicated variability in the field, and partly because measuring is time-consuming and expensive.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Congjun Feng ◽  
Murray Gingras ◽  
Mengsi Sun ◽  
Bing Wang

This study focuses on low resistivity thick layer sandstone in the X~XII groups of the third member of Qingshankou Formation at Daqingzijing oilfield, along with comprehensive data of logging, core, oil test, and production test. Based on the current data, we characterized the logs of low resistivity thick-layer sandstone, quantitatively identified calcareous sandstone and low resistivity reservoir, predicted the reservoir thickness, and further explored the causes of low resistivity reservoir of the region. The resistivity of thick layer sandstone in the X~XII groups of Qingshankou Formation can be classified into low amplitude logfacies, middle amplitude logfacies, and sharp high amplitude logfacies. Sharp high amplitude logfacies sandstone is the tight sandstone of the calcareous cementation. Low amplitude logfacies sandstone is water layer. For the middle amplitude logfacies sandstone, water layer or oil-water layer can be identified with the identification standard. Low amplitude structure, high clay content, high irreducible water saturation, and high formation water salinity are attributed to the origin of low resistivity oil layer.


2021 ◽  
Author(s):  
Chanh Cao Minh ◽  
Vikas Jain ◽  
David Maggs ◽  
Kais Gzara

Abstract We have shown previously that while total porosity is the weighted sum of density and neutron porosities, hydrocarbon volume is the weighted difference of the two. Thus, their ratio yields hydrocarbon, or equivalently, water saturation (Sw). In LWD environments where negligible invasion takes place while drilling, we investigate whether Sw derived from LWD density-neutron logs could approach true Sw in unknown or mixed water salinity environments. In such environments, it is well known that Sw determined from standalone resistivity or capture sigma logs is uncertain due to large water resistivity (Rw) or capture sigma (Σw) changes with salinity. On the other hand, the water density (ρw) and hydrogen index (HIw) variations with salinity are much less (Table 1). Hence, the water point on the density neutron crossplot does not move with salinity as much as the water point on a sigma-porosity crossplot does. Similarly, the water point on a resistivity-porosity Pickett plot would move drastically with changes in Rw. Also, because the hydrocarbon effect on density-neutron logs is much less in oil than in gas, the weights in the density-neutron porosities can be conveniently set at midpoint in light oil-bearing reservoirs without compromising porosity and saturation results. Thus, a quicklook estimate of Sw from density-neutron logs is the normalized ratio of the difference over the sum of density and neutron porosities. The normalization factor is a function of the hydrocarbon density. We also build a graphical Sw overlay for petrophysical insights. We tested the LWD density-neutron derived Sw in two Middle East carbonate oil wells that have mixed salinity. The two wells were extensively studied in the past. In the first well, the reference Sw is given by the joint-inversion of resistivity-sigma logs, corroborated with Sw estimated from multi-measurements time-lapsed analysis, and validated with water analysis on water samples taken by formation testers. In the second well, comprehensive wireline measurements targeting mixed salinity such as dielectric and 3D NMR were acquired to derive Sw, and complemented by formation tester sampling, core measurements, and LWD resistivity-sigma Sw. In both wells, density-neutron quicklook Sw agrees surprisingly well with Sw from other techniques. It may lack the accuracy and precision and the continuous salinity output but is sufficient to pinpoint both flooded zones and bypassed oil zones. Since density-neutron is part of triple-combo data that are first available in well data acquisition, it is recommended to go beyond porosity application and compute water saturation (Sw) in unknown or mixed salinity environments. The computation is straightforward and can be useful to complement other established techniques for quick evaluation in unknown or mixed water salinity environments.


Sign in / Sign up

Export Citation Format

Share Document