Constitutive Equation of 5Cr21Mn9Ni4N Valve Steel during Hot Compression

2013 ◽  
Vol 750-752 ◽  
pp. 2165-2169 ◽  
Author(s):  
Yong Qi Cheng ◽  
Zheng Rong Zhang ◽  
Miao Yan Zheng ◽  
Dong Qiang Mo

The hot compression tests on a Gleeble-1500D thermal mechanics simulator were carried out under the strain rate range of 1~ 0.005s-1 at the temperature range of 873-1373K in order to evaluate the constitutive equation of 5Cr21Mn9Ni4N valve steel. All of the flow stress curves exhibit a single peak stress, after which the stress is followed by a steady state regime. The results indicate that the deforming behavior is strongly depending on the strain rate and the deforming temperature. According the experimental data, the hyperbolic law is used to develop the constitutive equations. In the constitutive equations, the effect of the deforming temperature and the strain rate are represented by the Zener-Hollomam parameter. And the flow stress curves are coinciding with the constitutive equation of .

2018 ◽  
Vol 37 (1) ◽  
pp. 75-87
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Jiamin Shi ◽  
Wen Wang ◽  
Yingying Liu

AbstractConstitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress–strain data from isothermal hot compression tests, in a wide range of temperature of 1,023~1,273 K, and strain rate range of 0.001~10 s–1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.


2012 ◽  
Vol 538-541 ◽  
pp. 1687-1692
Author(s):  
Ji Xiang Zhang ◽  
Wei Feng ◽  
Hui Wen ◽  
Guo Yin An

The flow stress behavior of 6016 aluminum alloy was investigated on the condition of temperature range from 420°C to 540°C and strain rate range from 0.001s-1to 1s-1based on hot compression experiment on Gleeble-1500 thermal simulation machine. The result shows that the flow stress of 6016 aluminum alloy decreases with the enhancement of temperature and increases with the increase of strain rate. Especially, the flow stress increases tendency becomes obvious when the strain rate greater than 0.1s-1. Based on the results above, a constitutive equation for flow stress of 6016 aluminum alloy when the temperature is above 420°C is obtained by linear regression.


2011 ◽  
Vol 117-119 ◽  
pp. 1689-1692
Author(s):  
Fu Xiao Chen ◽  
Xiang Zhen Chen ◽  
Fu Tao Sun

To study the superplasticity of AZ31B magnesium alloy, hot compression tests were performed in forming temperature range from 280°C to 440°C and strain rate range from 0.001s-1 to 0.1s-1. The influence of deformation strain rate and forming temperature on flow stress was also analyzed detailed. It was shown that the flow stress of AZ31B was very sensitive to formpng temperature and stain rate, and was decreased with deformation temperature increasing, and was increased with stain rate increasing. However, no significant change of flow stress was observed at the temperature of 440°C and the strain rate below 0.01s-1. The activation energy of AZ31B in superplastic deformation was 141.6KJ•mol-1 and its constitutive equation was established also.


2015 ◽  
Vol 816 ◽  
pp. 810-817
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Xing Zhang

The hot deformation behaviors of Aluminum alloy C919 were studied in the present investigation. The hot compression tests for C919 were carried out in the temperature range of 350°C~470°C and strain rates range of 0.001s-1~1s-1 using GLEEBLE-1500 thermal simulate testing machine. Optical microscopy (OM) was used for the microstructure characterization. The experimental results showed that the flow stress of C919 aluminum alloy decreased with increasing temperature and decreasing strain rates and the flow stress curves tended to increase at a strain rate of 1s-1 with increasing strain, while the flow stresses kept with increasing strain at lower strain rate. The alloys were more prone to dynamic recrystallization with decreasing strain rates during hot deformation. The hot compression behavior of C919 aluminum alloy can be described as hyperbolic sine function corrected Arrhenius relation. The processing maps for the alloy were built at a strain of 0.6. The instability deformation domain occurred at temperatures range from 350°C and 380°C and at a strain rate of 0.1-1s-1. Based on the processing maps and microstructure observations, the optimum hot-working parameters were determined to be at a temperature of 470°C in the strain rate range from 0.1-0.01s−1 for the C919 aluminum alloy.


2019 ◽  
Vol 38 (2019) ◽  
pp. 461-475
Author(s):  
Jun Cai ◽  
Meng Wang ◽  
Jiamin Shi ◽  
Kuaishe Wang ◽  
Wen Wang

AbstractConstitutive analysis for elevated temperature flow behavior of BFe10-1-2 alloy was carried out by using experimental stress–strain data from isothermal hot compression tests on a Gleeble-3800 thermo-mechanical simulator, in a wide of temperature range of 1,023–1,273 K, and strain rate range of 0.001–10 s−1. A constitutive equation based on double multiple nonlinear regression (DMNR) was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data obtained from the developed equation based on DMNR was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. The results showed that the developed constitutive equation based on DMNR could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.


2015 ◽  
Vol 1095 ◽  
pp. 579-582
Author(s):  
Rui Bin Mei ◽  
Bo Zhang ◽  
B. Cai ◽  
X.Y. Zhang ◽  
Z.T. Zou ◽  
...  

The flow stress behavior of the 7085 aluminum alloy was studied through single-pass compression experiment by using MMS-300 simulator within temperature range of 300-450°C and strain rate range of 0.01-10s-1. Dynamic recrystallization occurs in hot compression of 7085 alloy and the stress-strain curves are presented as wave with higher deformation temperature and strain rate. Increasing of deformation velocity and reducing temperature results in higher peak stress. Then a mathematical model has been developed to predict the stress-strain curves based on phenomenological representation of the curves and the traditional theories for constitutive equations which incorporate the power law. The constitutive equation expressed in terms of peak stress, peak strain and additional parameters to predict flow stress. The stress-strain curves of 7085 alloy predicted by this model are in good agreement with experimental results.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341036 ◽  
Author(s):  
XIA-WEI YANG ◽  
JING-CHUAN ZHU ◽  
ZHI-SHENG NONG ◽  
MAO YE ◽  
ZHONG-HONG LAI ◽  
...  

The hot flow stress of as-quenched Al - Cu - Mn alloy was modeled using the constitutive equations. The as-quenched Al - Cu - Mn alloy were treated with isothermal hot compression tests in the temperature range of 350–500°C, the strain rate range of 0.001–1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al - Cu - Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al - Cu - Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al - Cu - Mn alloy parts.


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2014 ◽  
Vol 887-888 ◽  
pp. 1161-1168
Author(s):  
Jian Guo Wang ◽  
Dong Liu ◽  
Tao Wang ◽  
Yan Hui Yang

The deformation behavior of a Udimet720Li superalloy under hot compression tests was characterized in the temperature range of 1060~1160°C and strain rate range of 0.001~20s-1. Processing maps were conducted at a series of strains to calculate the efficiency of hot working and to recognize the instability regions of the flow behavior. A Zener-Hollomon parameter is given to characterize the dependence of peak stress on temperature and strain rate. The efficiency of power dissipation of the Udimet720Li superalloy obtained in a strain range of 0.1~0.7 are essentially similar, which indicates that strain does not have a significant influence and the instability region shown in high strain and high strain rates at all temperatures. The regions for the full recrystallization can be divided by the dissolution beginning temperature of primary γ'which are the optimum hot working parameters.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


Sign in / Sign up

Export Citation Format

Share Document