CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY

2013 ◽  
Vol 27 (19) ◽  
pp. 1341036 ◽  
Author(s):  
XIA-WEI YANG ◽  
JING-CHUAN ZHU ◽  
ZHI-SHENG NONG ◽  
MAO YE ◽  
ZHONG-HONG LAI ◽  
...  

The hot flow stress of as-quenched Al - Cu - Mn alloy was modeled using the constitutive equations. The as-quenched Al - Cu - Mn alloy were treated with isothermal hot compression tests in the temperature range of 350–500°C, the strain rate range of 0.001–1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al - Cu - Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al - Cu - Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al - Cu - Mn alloy parts.

2013 ◽  
Vol 690-693 ◽  
pp. 2258-2264
Author(s):  
Xin Xu ◽  
Fang Po Li ◽  
Chun Feng ◽  
Peng Wang ◽  
Sheng Yin Song

The flow stress of a high-Mn austenitic Fe-20Mn-3Si-3Al TRIP steel was investigated by isothermal compression tests on Gleeble 3500D thermo-mechanical simulator in the temperature ranges from 900°C to 1100°C and the strain rate ranges from 0.01s-1 to 10s-1. The results show that the flow stress is sensitively dependent on deformation temperature and strain rate, and the flow stress increases with strain rate and decreases with deformation temperature. The flow stress during isothermal compression can be described by the Zener-Hollomon (Z) parameter in the hyperbolic sine equation with the hot deformation activation energy Q of 385.2kJ/mol.


2018 ◽  
Vol 37 (1) ◽  
pp. 75-87
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Jiamin Shi ◽  
Wen Wang ◽  
Yingying Liu

AbstractConstitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress–strain data from isothermal hot compression tests, in a wide range of temperature of 1,023~1,273 K, and strain rate range of 0.001~10 s–1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.


2011 ◽  
Vol 117-119 ◽  
pp. 1689-1692
Author(s):  
Fu Xiao Chen ◽  
Xiang Zhen Chen ◽  
Fu Tao Sun

To study the superplasticity of AZ31B magnesium alloy, hot compression tests were performed in forming temperature range from 280°C to 440°C and strain rate range from 0.001s-1 to 0.1s-1. The influence of deformation strain rate and forming temperature on flow stress was also analyzed detailed. It was shown that the flow stress of AZ31B was very sensitive to formpng temperature and stain rate, and was decreased with deformation temperature increasing, and was increased with stain rate increasing. However, no significant change of flow stress was observed at the temperature of 440°C and the strain rate below 0.01s-1. The activation energy of AZ31B in superplastic deformation was 141.6KJ•mol-1 and its constitutive equation was established also.


2019 ◽  
Vol 38 (2019) ◽  
pp. 461-475
Author(s):  
Jun Cai ◽  
Meng Wang ◽  
Jiamin Shi ◽  
Kuaishe Wang ◽  
Wen Wang

AbstractConstitutive analysis for elevated temperature flow behavior of BFe10-1-2 alloy was carried out by using experimental stress–strain data from isothermal hot compression tests on a Gleeble-3800 thermo-mechanical simulator, in a wide of temperature range of 1,023–1,273 K, and strain rate range of 0.001–10 s−1. A constitutive equation based on double multiple nonlinear regression (DMNR) was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data obtained from the developed equation based on DMNR was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. The results showed that the developed constitutive equation based on DMNR could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.


2013 ◽  
Vol 750-752 ◽  
pp. 2165-2169 ◽  
Author(s):  
Yong Qi Cheng ◽  
Zheng Rong Zhang ◽  
Miao Yan Zheng ◽  
Dong Qiang Mo

The hot compression tests on a Gleeble-1500D thermal mechanics simulator were carried out under the strain rate range of 1~ 0.005s-1 at the temperature range of 873-1373K in order to evaluate the constitutive equation of 5Cr21Mn9Ni4N valve steel. All of the flow stress curves exhibit a single peak stress, after which the stress is followed by a steady state regime. The results indicate that the deforming behavior is strongly depending on the strain rate and the deforming temperature. According the experimental data, the hyperbolic law is used to develop the constitutive equations. In the constitutive equations, the effect of the deforming temperature and the strain rate are represented by the Zener-Hollomam parameter. And the flow stress curves are coinciding with the constitutive equation of .


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2013 ◽  
Vol 747-748 ◽  
pp. 320-326 ◽  
Author(s):  
Wen Xiang Wu ◽  
Li Jin ◽  
Jie Dong ◽  
Zhen Yan Zhang ◽  
Wen Jiang Ding

The hot deformation behaviors and microstructural evolution of Mg-3.0Nd-0.2Zn-0.4Zr (wt. %, NZ30K) alloy were investigated by means of the isothermal hot compression tests at temperatures of 350-500 °C with strain rates of 0.001, 0.01, 0.1 and 1s-1. The results showed that the flow stress increased to a peak and then decreased which showed a dynamic flow softening. The flow stress behavior was described by the hyperbolic sine constitutive equation with an average activation energy of 193.8 kJ/mol. The average size of dynamically recrystallized grains of hot deformed NZ30K alloy was reduced by increasing the strain rate and/or decreasing the deformation temperature. A large amount of fine particles precipitated in the grains interior and at the grain boundaries when heated to the compression temperatures and soaked for 5min below 450 °C. However, the volume fraction of particles decreased significantly when soaked for 5 min at 500 °C, and the coarse particles precipitated mainly at the grain boundaries. Hot deformation at the temperature of 500 °C around and at the strain rate range of 0.1s-1 was desirable for NZ30K alloy.


2013 ◽  
Vol 652-654 ◽  
pp. 1080-1083
Author(s):  
Chun Xia Wang ◽  
Fu Xiao Yu ◽  
Da Zhi Zhao ◽  
Xiang Zhao ◽  
Liang Zuo

The deformation behavior of DC cast Al-2Si and Al-15Si alloys have been studied by means of compression test at temperature range of 300-500°C and strain rate range of 0.01-5 s-1. The results show that the flow stress of the Al-Si alloys increases with decreasing compression temperature and increasing strain rate. The flow curves determined from the compression tests exhibit that the deformation of the materials is controlled by two competing mechanisms: strain hardening and flow softening. Higher silicon content in the alloys also leads to higher flow stress during deformation and tend to show more significant flow softening. Particle damage during the deformation may have an influence on the flow curves of the alloys.


2014 ◽  
Vol 633-634 ◽  
pp. 431-435 ◽  
Author(s):  
Ling Zhan Zhou ◽  
Li Ming Yang ◽  
Yin Jiang Peng ◽  
Xiu Rong Zhu

In this paper, squeeze casting process was adopted to produce the Fe-Cr-Ni preform reinforced Al-Si-Cu-Ni-Mg aluminum composite. And then, T6 heat treatment was conducted to enhance the composite’s performance. After which, isothermal compression tests in temperature range of 473-773 K at an interval of 150 K and strain rate range from 0.001 to 10 s-1 were carried out on Gleeble 3500 thermo-mechanical simulation machine. It is found that, for a specific strain rate, the flow stress decreases markedly with temperature increases. And for a fixed temperature, the flow stress generally increases as the strain rate increases. Based on the experimental true stress-true strain data, the Arrhenius type model was established.


2012 ◽  
Vol 538-541 ◽  
pp. 1687-1692
Author(s):  
Ji Xiang Zhang ◽  
Wei Feng ◽  
Hui Wen ◽  
Guo Yin An

The flow stress behavior of 6016 aluminum alloy was investigated on the condition of temperature range from 420°C to 540°C and strain rate range from 0.001s-1to 1s-1based on hot compression experiment on Gleeble-1500 thermal simulation machine. The result shows that the flow stress of 6016 aluminum alloy decreases with the enhancement of temperature and increases with the increase of strain rate. Especially, the flow stress increases tendency becomes obvious when the strain rate greater than 0.1s-1. Based on the results above, a constitutive equation for flow stress of 6016 aluminum alloy when the temperature is above 420°C is obtained by linear regression.


Sign in / Sign up

Export Citation Format

Share Document