Modification and Application of Gaussian Plume Model for an Industrial Transfer Park

2013 ◽  
Vol 785-786 ◽  
pp. 1384-1387 ◽  
Author(s):  
Xiao Qin Shang ◽  
Yun Yun Li ◽  
You Pan ◽  
Ru Feng Liu ◽  
Ya Ping Lai

Applying diffusion model in gas leakage incident consequences analysis could provide favorable technical support and professional assistant method for accident emergency response with great realistic significance for industrial transfer park. The core of analysis lies in the selection and rational use of diffusion model. GPM for continuous released condition with some foundation hypothesis conditions should be modified in practice. Comprehensive amendment was discussed and implemented in this paper based on actual circumstance situation in order to achieve the objective of higher accurater analysis. The improvement successfully enhances the model analysis ability and applicability, which could play a role as an important component in the emergency response system for the parks management.

2012 ◽  
Vol 550-553 ◽  
pp. 2941-2944 ◽  
Author(s):  
Yun Yun Li ◽  
Xiao Qin Shang ◽  
Ru Feng Liu

The chemical industrial park’s quick development has brought out many security and environment problem. For the common leakage accidents, it is urgently needed to build emergency response decision support system. The analysis of the accident is the crucial part of the system, in this paper the method of integrating GIS with diffusion model was used to simulate the three-dimensional diffusion process and predict the impact scope of the accident. The Pasquill-Gifford model and Gaussian diffusion model was introduced; Gaussian plume model was applied through the example to illustrate the method. The system is not just convenient for drawing up critical situation pre-arranged planning, but could offer timely assistant decision for emergency command.


ICCTP 2009 ◽  
2009 ◽  
Author(s):  
Hantao Zhao ◽  
Yunpeng Wang ◽  
Shiwu Li ◽  
Hongyan Mao

2020 ◽  
Author(s):  
Akmal Rustamov

The paper addresses the problem of increasing transportation safety due to usage of new possibilities provided by modern technologies. The proposed approach extends such systems as ERA-GLONASS and eCall via service network composition enabling not only transmitting additional information but also information fusion for defining required emergency means as well as planning for a whole emergency response operation. The main idea of the approach is to model the cyber physical human system components by sets of services representing them. The services are provided with the capability of self- contextualization to autonomously adapt their behaviors to the context of the car-driver system. The approach is illustrated via an accident emergency situation response scenario. “ERA-GLONASS” is the Russian state emergency response system for accidents, aimed at improving road safety and reducing the death rate from accidents by reducing the time for warning emergency services. In fact, this is a partially copied European e Call system with some differences in the data being transmitted and partly backward compatible with the European parent. The principle of the system is quite simple and logical: in the event of an accident, the module built into the car in fully automatic mode and without human intervention determines the severity of the accident, determines the vehicle’s location via GLONASS or GPS, establishes connection with the system infrastructure and in accordance with the protocol, transfers the necessary data on the accident (a certain distress signal). Having received the distress signal, the employee of the call center of the system operator should call the on-board device and find out what happened. If no one answers, send the received data to Sistema-112 and send it to the exact coordinates of the team of rescuers and doctors, and the last one to arrive at the place is given 20 minutes. And all this, I repeat, without the participation of a person: even if people caught in an accident will not be able to independently call emergency services, the data on the accident will still be transferred. In this work intended to add some information about applying system project in Uzbek Roads especially mountain regions like “Kamchik” pass. The Kamchik Pass is a high mountain pass at an elevation of 2.306 m above the sea level, located in the Qurama Mountains in eastern Uzbekistan and its length is about 88km.The road to reach the pass is asphalted, but there are rough sections where the asphalt has disappeared. It’s called A373. The old road over the pass was by passed by a tunnel built in 1999. On the horizon, the snow-capped peaks of the Fan Mountains come into view. The pass is located in the Fergana Valley between the Tashkent and Namangan Regions.


Author(s):  
Hao Jin ◽  
Ligong Lu ◽  
Junwei Liu ◽  
Min Cui

Abstract Motivation Nations around the world have been significantly impacted during the COVID-19 pandemic. China’s strategies for controlling COVID-19 offer valuable lessons for the global community. By learning from China’s experience and lessons, other countries could also find appropriate methods to control the pandemic. Problem statement What measures has China taken to control the pandemic? What lessons has China learned through this pandemic? Approach/methods The literature on China’s lessons and experience in controlling the COVID-19 pandemic was searched and reviewed. Related newspapers and magazines were also searched. Results China’s experience can be summed up as establishing temporary hospitals, strict isolation, experts with a knowledge of COVID-19, and measures that increase social distancing. Conclusions By learning from the experience of China, other countries in the world could eventually find the methods to control the COVID-19 pandemic. An emergency response system should be established in each country. Doctors and nurses are not alone in fighting COVID-19, and the entire world is helping them. With cooperation, current difficulties could be overcome.


2012 ◽  
Vol 226-228 ◽  
pp. 2253-2257
Author(s):  
Ren Hui Liu ◽  
Bo Yu

It is a nonlinear complex system for project emergency response system, that is a continuous process for the evolution of emergency construction project development process. The nonlinear differential equations that can describe the sudden emergency construction project the evolution of mathematical models. Emergency system by Logistic model was modified, taking into account the development of emergency systems will certainly be outside the system during the impact, combined with the project incidents of law principles of the role of Heinrich proposed TS-based emergency response system evolution equation Model, demonstrated the system at different stages of the emergency rules and features. For the emergency system in which the different stages of development, the corresponding measures to improve emergency response capabilities.


Sign in / Sign up

Export Citation Format

Share Document