Review of Mechanical Properties and Durability of Concrete Containing Nano-Particles

2013 ◽  
Vol 787 ◽  
pp. 413-416
Author(s):  
Ji Xiang Gao ◽  
Peng Zhang ◽  
Xiao Bing Dai

As a kind of high performance concrete material in the construction of structure engineering, the concrete containing nanoparticles has been paid more and more attention to and used in the field of high and long span buildings because of good mechanical performance and durability performance. In order to in-depth understand the characteristic of the concrete containing nanoparticles and promote the application of the concrete containing nanoparticles in practical engineering, a series of research works on the mechanical properties and durability of the concrete containing nanoparticles were summarized based on the current study results. Furthermore, the research trend of the concrete containing nanoparticles was presented.

2013 ◽  
Vol 804 ◽  
pp. 8-11 ◽  
Author(s):  
Xiao Bing Dai ◽  
Peng Zhang ◽  
Ji Xiang Gao

As a kind of high performance cement based construction materials, because of good mechanical performance and durability, PVA fiber reinforced cement based materials have been paid more and more attention in the field of civil structure engineering. To grasp the characteristics of PVA fiber reinforced cement based composite materials and promote a better application of PVA fiber reinforced cement based composite in practical engineering, a series of research works on the mechanical properties and durability of PVA fiber reinforced cement based composite were introduced systematically.


2010 ◽  
Vol 168-170 ◽  
pp. 1506-1508
Author(s):  
Jie Sun

The ultra high performance concrete is a new cement-based composite material with ultra-high mechanical properties, excellent durability and excellent volume stability. In this paper, research and application of the ultra high performance concrete at home and abroad at present was introduced, existing problems of the ultra high performance concrete applied to much practical engineering were pointed out. Finally, the prospects of ultra high performance concrete were analyzed and the ultra high performance concrete is inevitable result of the sustainable development of modern concrete technology.


PCI Journal ◽  
2008 ◽  
Vol 53 (4) ◽  
pp. 108-130
Author(s):  
Mohsen A. Issa ◽  
Atef A. Khalil ◽  
Shahidul Islam ◽  
Paul D. Krauss

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3781
Author(s):  
Tianyu Wang ◽  
Yahong Zhao ◽  
Baosong Ma ◽  
Cong Zeng

The acid–alkaline-inducd corrosive environments inside wastewater concrete pipelines cause concrete structural deterioration and substantial economic losses all over the world. High-performance concrete/mortar (HPC) was designed to have better resistance to corrosive environments, with enhanced service life. However, the durability of HPC in wastewater pipeline environments has rarely been studied. A high-performance mortar mixture (M) reinforced by supplemental materials (including fly ash and silica fume) and polyvinyl alcohol (PVA) fibers, together with a mortar mixture (P) consisting of cement, sand and water with similar mechanical performance, were both designed and exposed to simulated wastewater pipeline environments. The visual appearance, dimensional variation, mass loss, mechanical properties, permeable pore volume, and microstructure of the specimens were measured during the corrosion cycles. More severe deterioration was observed when the alkaline environment was introduced into the corrosion cycles. Test results showed that the M specimens had less permeable pore volume, better dimensional stability, and denser microstructure than the P specimens under acid–alkaline-induced corrosive environments. The mass-loss rates of the M specimens were 66.1–77.2% of the P specimens after 12 corrosion cycles. The compressive strength of the M specimens was 25.5–37.3% higher than the P specimens after 12 cycles under corrosive environments. Hence, the high-performance mortar examined in this study was considered superior to traditional cementitious materials for wastewater pipeline construction and rehabilitation.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 427
Author(s):  
Pavlina Mateckova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda

High-performance concrete (HPC) is subjected to wide attention in current research. Many research tasks are focused on laboratory testing of concrete mechanical properties with specific raw materials, where a mixture is prepared in a relatively small amount in ideal conditions. The wider utilization of HPC is connected, among other things, with its utilization in the construction industry. The paper presents two variants of HPC which were developed by modification of ordinary concrete used by a precast company for pretensioned bridge beams. The presented variants were produced in industrial conditions using common raw materials. Testing and comparison of basic mechanical properties are complemented with specialized tests of the resistance to chloride penetration. Tentative expenses for normal strength concrete (NSC) and HPC are compared. The research program was accomplished with a loading test of model experimental pretensioned beams with a length of 7 m made of ordinarily used concrete and one variant of HPC. The aim of the loading test was to determine the load–deformation diagrams and verify the design code load capacity calculation method. Overall, the article summarizes the possible benefits of using HPC compared to conventional concrete.


2021 ◽  
Author(s):  
◽  
◽  
◽  
◽  

This Phase II Report on ultra-high-performance concrete (UHPC) supersedes and incorporates the Phase I report.


Author(s):  
HongBin Liu ◽  
KaiLu Xiao ◽  
WeiQi Tang ◽  
WeiZhe Ma ◽  
ZhengQi Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document