Studies on the Resistance of Cholesterol-Lowering of Lactic Acid Bacteria to Simulated Gastrointestinal Circumstance In Vitro

2013 ◽  
Vol 807-809 ◽  
pp. 2014-2018 ◽  
Author(s):  
Yong Qing Yang ◽  
Yuan Hong Xie ◽  
Hong Xing Zhang ◽  
Hui Liu

Acid and bile are primary natural barriers in the gastrointestinal tract, and tolerances of the probiotics help to survive and exert their beneficial effects. Eight lactic acid bacteria strains were selected based on cholesterol-lowering ability from Chinese traditional kefir grain, namedlactococcus lactis subsp lactisKS4, J4, P1 and P5,lactobacillus caseiKTx, KL1 and J1 andstreptococcus thermophilusTx. The strains were cultured in MRS medium (pH 3.0 and 0.3% bile salt). Acid and bile salt tolerances were evaluated by measuring and comparing optical density values at 600nm (OD600). The o-phthalaldehyde method (OPA) was used. The cholesterol-lowering rate of strains KL1 and J1 are 60.1% and 55.3% to simulated gastrointestinal adverse circumstance in vitro. The results indicate thatlactobacillus caseiKL1 and J1 are effective as probiotics with cholesterol-lowering activities.

2011 ◽  
Vol 345 ◽  
pp. 139-146 ◽  
Author(s):  
Chun Feng Guo ◽  
Lan Wei Zhang ◽  
Jing Yan Li ◽  
Ying Chun Zhang ◽  
Chao Hui Xue ◽  
...  

.Cholesterol-lowering effect of lactic acid bacteria (LAB) with bile salt hydrolase activity is well known. In this study, 150 LAB were screened for bile salt deconjugation ability and probiotic characters. Fourteen isolates with higher bile salt deconjugation ability were initially screened out using deconjugation rate above 50% as standard. These isolates were further screened for adhesion to HT-29 cells, bile tolerance and acid resistance. Four isolates, namely Lactobacillus casei F0822, Lactobacillus casei F0422, Enterococcus faecium F0511 and Enterococcus faecium IN7.12, was finally screened out. The 4 isolates may be able to reduce serum cholesterol levels in human and thus have a potential to apply in the biomedicine field.


2016 ◽  
Vol 79 (11) ◽  
pp. 1919-1928 ◽  
Author(s):  
SHUANG XU ◽  
TAIGANG LIU ◽  
CHIRAZ AKOREDE IBINKE RADJI ◽  
JING YANG ◽  
LANMING CHEN

ABSTRACT In this study, we analyzed Chinese traditional fermented food to isolate and identify new lactic acid bacteria (LAB) strains with novel functional properties and to evaluate their cellular antioxidant and bile salt hydrolase (BSH) activities in vitro. A sequential screening strategy was developed to efficiently isolate and obtain 261 LAB strains tolerant of bile salt, acid, and H2O2 from nine Chinese traditional fermented foods. Among these strains, 70 were identified as having 2,2-diphenyl-1-picrylhydrazyl radical scavenging and/or BSH activity. These strains belonged to eight species: Enterococcus faecium (33% of the strains), Lactobacillus plantarum (26%), Leuconostoc mesenteroides (14%), Pediococcus pentosaceus (6%), Enterococcus durans (9%), Lactobacillus brevis (9%), Pediococcus ethanolidurans (3%), and Lactobacillus casei (1%). The pulsed-field gel electrophoresis genome fingerprinting profiles of these strains revealed 38 distinct pulsotypes, indicating a high level of genomic diversity among the tested strains. Twenty strains were further evaluated for hydroxyl radical scavenging activity, reducing power, and ferrous ion chelating activity exerted by both viable intact cells and/or intracellular cell-free extracts. Some strains, such as L. plantarum D28 and E. faecium B28, had high levels of both cellular antioxidant and BSH activities in vitro. These strains are promising probiotic components for health-promoting functional foods.


Author(s):  
G. T. Uryadova ◽  
E. A. Gorelnikova ◽  
N. A. Fokina ◽  
A. S. Dolmashkina ◽  
L. V. Karpunina

Aim. Study of the effect of exopolysaccharides (EPS) of lactic acid cocci on cytokine activity of macrophages of mice with phagocytosis in vitro Staphylococcus aureus 209-P. Materials and methods. The EPS of Streptococcus thermophilus and Lactococcus lactis B-1662 was used in the work. At 13, 5 and 7, AMP and PMP were isolated and the phagocytosis process was modeled in vitro. After 30 minutes, 1, 6 and 24 hours, the content of pro-inflammatory cytokines IL-1a and TNF-a was determined. Results. EPSs had an ambiguous effect on the production of cytokines. The greatest effect on the synthesis was provided by EPS of S. thermophilus. Conclusion. The results of the study allow us to talk about the possibility of using EPS of S. thermophilus as a preventive immunomodulator for correction of the cytokine status of animals.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jie Yang ◽  
Tengqi Gao ◽  
Feng Ge ◽  
Hao Sun ◽  
Zihang Cui ◽  
...  

The demand for roasted seaweed sandwich (Porphyra yezoensis) product has risen in recent years. The product slicing process has created a huge number of scraps that are not utilized effectively. Three lactic acid bacteria (LAB) strains were used to ferment P. yezoensis sauces in this study, including Lactobacillus fermentum, Lactobacillus casei, Streptococcus thermophilus, and the mixed strains (1:1:1, v/v). The fermentation characteristics, antioxidant capacity in vitro, sensory properties, and flavoring substances of fermented P. yezoensis sauces were analyzed. After 21 days of fermentation, all LAB strains grew well in the P. yezoensis sauces, with protease activity increased to 6.6, 9.24, 5.06, and 5.5 U/mL, respectively. Also, the flavors of P. yezoensis sauces fermented with L. casei and L. fermentum were satisfactory. On this premise, gas chromatography-mass spectrometry (GC-MS) was used to investigate the changes in gustatory compounds in P. yezoensis sauces fermented with L. casei and L. fermentum. In general, 42 and 41 volatile flavor chemicals were identified after the fermentation of L. casei and L. fermentum. Furthermore, the fermented P. yezoensis sauce possessed greater DPPH scavenging activity and ferric-reducing ability power than the unfermented P. yezoensis. Overall, the flavor and taste of P. yezoensis sauce fermented by L. casei was superior.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Dominika Jurášková ◽  
Susana C. Ribeiro ◽  
Celia C. G. Silva

The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2013 ◽  
Vol 781-784 ◽  
pp. 1336-1340
Author(s):  
Hui Liu ◽  
Yuan Hong Xie ◽  
Tao Han ◽  
Hong Xing Zhang

Cholesterol-lowering strains were obtained by high throughput screening technology and ortho-phthalaldehyde method. We used oxford cup method to screen again to obtain strains of high yield bile salt hydrolase and illuminate action mechanism ofLactobacillusreducing cholesterol. Screened six strains had the ability of high yield bile salt hydrolase and good ferment ability. The results of identifying bacteria species: strain KTxKL1J1 wereLactobacillus casei, strain Tx wasStreptococcus thermophilus, strain KS4P1 wereLactococcus lactis subsp.lactis, where the last two bacteria were strain of high yield bile salt hydrolase to be few known in literature. This work showed that dissociation bile salts and cholesterol conjuncted sediments by bile salt hydrolase decomposing conjugated bile salts.


2019 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

AbstractProbiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluatein vitroprobiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermentedTeff injeradough,ErgoandKochoproducts. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35-97.11% and 38.40-90.49% survival rate at pH values (2, 2.5 and 3) for 3 and 6 h in that order. The four acid tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt tolerant LAB isolates were found inhibiting some foodborne test pathogenic bacteria to varying degrees. All acid-and-bile tolerant isolates displayed varying sensitivity to different antibiotics. Thein vitroadherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged toLactobacillusspecies were identified to strain level using 16S rDNA gene sequence comparisons and namely wereLactobacillus plantarumstrain CIP 103151,Lactobacillus paracaseisubsp. tolerans strain NBRC 15906,Lactobacillus paracaseistrain NBRC 15889 andLactobacillus plantarumstrain JCM 1149. The fourLactobacillusstrains were found to have potentially useful to produce probiotic products.


Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


Sign in / Sign up

Export Citation Format

Share Document