Light Emission Induced by the Indium Distribution in InGaN Nanowires

2013 ◽  
Vol 815 ◽  
pp. 148-153
Author(s):  
Jun Jie Shi ◽  
Tie Cheng Zhou ◽  
Hong Xia Zhong ◽  
Xin He Jiang ◽  
Pu Huang

The InGaN nanowires (NWs) have attracted intense attention for their huge potential in applications such as light emitting diodes, laser diodes and solar cells. Although lots of work are focused on improving their optical performance, little is known about the influence of the In distribution and the surface states on the microscopic light emission mechanism. In order to give an atomic level understanding, we investigate the electronic structures of the wurtziteGa-rich InGaN NWs with different In distributions using first-principles calculations. We find that the In-atoms are apt to distribute on the surface of the NWs and the short surface In-N chains can be easily formed. For the unsaturated NWs, several new bands are induced by the surface states, which can be modified by the surface In microstructures. The randomly formed surface In-N chains can highly localize the electrons/holes at the band edges and dominate the interband optical transition. For the saturated NWs, the band edges are determined by the inner atoms. Our work is useful to improve the performance of the InGaN NW-based optoelectronic devices.

2021 ◽  
Vol 23 (7) ◽  
pp. 4255-4261
Author(s):  
Li Chen ◽  
Chuan Jiang ◽  
Maoyou Yang ◽  
Tao Hu ◽  
Yan Meng ◽  
...  

From first-principles calculations, the magnetism and electronic structures of bilayer bismuth (stannum) films at the monolayer CrI3 (CrBr3) interface are studied.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2005 ◽  
Vol 475-479 ◽  
pp. 3111-3114
Author(s):  
Masataka Mizuno ◽  
Hideki Araki ◽  
Yasuharu Shirai

Some of intermetallic compounds exist in a wide range of concentration around the stoichiometric composition. First-principles electronic structure calculations have been performed for constitutional defects in non-stoichiometric CoAl and CoTi in order to investigate their stabilities and structural relaxations induced by constitutional defects. For the evaluation of stabilities of constitutional defects, the compositional dependence curves both of formation energies and of lattice parameters are obtained by the calculations employing supercells in various sizes. The lattice relaxations around constitutional defects are discussed by analyzing the change in electronic structures induced by constitutional defects.


2005 ◽  
Vol 475-479 ◽  
pp. 3095-3098
Author(s):  
Katsuyuki Matsunaga ◽  
Teruyasu Mizoguchi ◽  
Atsutomo Nakamura ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

First-principles pseudopotential calculations were performed to investigate atomic and electronic structures of titanium (Ti) dopants in alumina (Al2O3). It was found that a substitutional Ti3+ defect induced an extra level occupied by one electron within the band gap of Al2O3. When two or more substitutional Ti3+ defects were located closely to each other, the defect-induced levels exhibited strong bonding interactions, and their formation energies decreased with increasing numbers of Ti3+ defects. This indicates that association and clustering of substitutional Ti3+ defects in Al2O3 can take place due to the interaction of the defect-induced levels.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2018 ◽  
Vol 6 (11) ◽  
pp. 2830-2839 ◽  
Author(s):  
Gul Rehman ◽  
S. A. Khan ◽  
B. Amin ◽  
Iftikhar Ahmad ◽  
Li-Yong Gan ◽  
...  

Based on (hybrid) first-principles calculations, material properties (structural, electronic, vibrational, optical, and photocatalytic) of van der Waals heterostructures and their corresponding monolayers (transition metal dichalcogenides and MXenes) are investigated.


RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17829-17835
Author(s):  
Xiaotian Wang ◽  
Mengxin Wu ◽  
Tie Yang ◽  
Rabah Khenata

By first-principles calculations, for Heusler alloys Pd2CrZ (Z = Al, Ga, In, Tl, Si, Sn, P, As, Sb, Bi, Se, Te, Zn), the effect of Zn doping on their phase transition and electronic structure has been studied in this work.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18543-18552 ◽  
Author(s):  
Lanli Chen ◽  
Yuanyuan Cui ◽  
Hongjie Luo ◽  
Yanfeng Gao

The controllable phase transition temperature in charge doping VO2 is coupled with changes in the atomic and electronic structures. The current results provide a variable way to tune the VO2 phase transition temperature through charge doping.


Sign in / Sign up

Export Citation Format

Share Document