Higher-Order Elasticity Constants of Carbon Nanotubes

2013 ◽  
Vol 815 ◽  
pp. 516-519
Author(s):  
Bin Gao ◽  
Yu Zhou Sun ◽  
Shen Li

In this paper, the higher-order elasticity constants are evaluated in the theoretical scheme of higher-order continuum. A single-walled carbon nanotube is treated as a higher-order continuum cylindrical tube with a thin wall, and the representative cell is chosen as a triangle unit that contains four carbon atoms. The Brenner potential is employed to describe the C-C atomic interaction, and the higher-order constitutive relationship is derived by virtue of the higher-order Cauchy-Born rule. The higher-order elasticity constants of carbon nanotubes are evaluated based on the derived higher-order constitutive model, which can provide a foundation for the further analysis of the mechanical properties of carbon nanotubes in the theoretical scheme of higher-order continuum.

2007 ◽  
Vol 121-123 ◽  
pp. 1029-1032
Author(s):  
J.B. Wang ◽  
X. Guo ◽  
Hong Wu Zhang

Based on the higher order Cauchy-Born rule, a nanoscale finite deformation continuum theory, which links interatomic potentials and atomic microstructure of carbon nanotubes to a constitutive model, is presented for analysis of the mechanics of carbon nanotubes. By using of Tersoff-Brenner potential with two sets of parameters, the energy and Young’s modulus of graphite sheet and single-walled carbon nanotubes are studied based on the theory presented. The findings are in good agreement with the existing experimental and theoretical results.


RSC Advances ◽  
2019 ◽  
Vol 9 (48) ◽  
pp. 28135-28145
Author(s):  
Ahmed I. A. Abd El-Mageed ◽  
Takuji Ogawa

For the first time, using scanning probe microscopy, the supramolecular structures of terbium porphyrin double-decker complexes were observed on single-walled carbon nanotubes surfaces, where the molecules formed a well-ordered self-assembled array.


2009 ◽  
Vol 1240 ◽  
Author(s):  
Ji-Ye Kang ◽  
Su-Mi Eo ◽  
Loon-Seng Tan ◽  
Jong-Beom Baek

AbstractSingle-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were functionalized with 3,4-diaminobenzoic acid via “direct” Friedel-Crafts acylation reaction in PPA/P2O5 to afford ortho-diamino-functionalized SWCNT (DIF-SWCNT) and MWCNT (DIF-MWCNT). The resultant DIF-SWCNT and DIF-MWCNT showed improved solubility and dispersibility. To improve interfacial adhesion between CNT and polymer matrix, the grafting of ABPBI onto the surface of DIF-SWCNT (10 wt%) or DIF-MWCNT (10 wt%) was conducted by simple in-situ polymerization of AB monomer, 3,4-diaminobenzoic acid dihydrochloride, in PPA. The resultant ABPBI-g-MWCNT and ABPBI-g-SWCNT showed improved the mechanical and electrical properties.


2016 ◽  
Vol 29 (7) ◽  
pp. e3872 ◽  
Author(s):  
Michael Burger ◽  
Christian Bischof ◽  
Christian Schröppel ◽  
Jens Wackerfuß

2017 ◽  
Vol 19 (33) ◽  
pp. 22344-22354 ◽  
Author(s):  
Sajjad Ali ◽  
Tian Fu Liu ◽  
Zan Lian ◽  
Bo Li ◽  
Dang Sheng Su

The mechanism of CO oxidation by O2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Guiru Gu ◽  
Yunfeng Ling ◽  
Runyu Liu ◽  
Puminun Vasinajindakaw ◽  
Xuejun Lu ◽  
...  

We report an all-printed thin-film transistor (TFT) on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT) solution that is primarily consists of semiconducting carbon nanotubes (CNTs) with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) due to the special band structure and the one-dimensional (1D) quantum confined density of state (DOS) of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.


Sign in / Sign up

Export Citation Format

Share Document