Mathematical Modeling of Manufacturing Process Plan, Optimization Analysis with Stochastic and DSM Modeling Techniques

2013 ◽  
Vol 816-817 ◽  
pp. 1174-1180 ◽  
Author(s):  
Umer Asgher ◽  
Riaz Ahmad ◽  
Shahid Ikramullah Butt

The first job of the manufacturing workforce as they get novel drawings is to carry out the process planning. This task, once finished, usually direct both the organization and manufacturing setups. Process planning in manufacturing setup offers a specific and clear chronological path regarding how the product should be running and fabricated in a manufacturing system. In highly developed manufacturing setups, this would persuade, how the setup will be planned and laid out in grounding for the novel product. In this research work, fundamental process plan is developed for a side plate manufacturing together with all design and user requirements. Mathematically modeling is done using progressive closed loop approach. Research then searches the capabilities of optimization techniques like DSM (dependency structure matrix) and a novel stochastic search to provide the best approximate process planning solution. Finally the global optimization is analysed in both the techniques and one technique reaches at optimum solution.

2021 ◽  
Vol 15 ◽  
pp. 87-91
Author(s):  
Umer Asgher ◽  
Riaz Ahmad ◽  
Liaqat Ali

Industrial process planning is principally an association between design and development or final production and has vital function in the manufacturing systems. In this paper the under research industry is security vehicle manufacturing industry in Pakistan. First of all a fundamental process plan is developed and then modeled mathematically using progressive closed loop approach. Mathematically modeled process plan is then optimized in order to find optimal or sub optimal solutions. Research then investigates the capability of an innovative optimization technique called stochastic search in handling optimization of manufacturing process plan. This new technique of stochastic, searches the best approximate process planning solution. Finally the research examines the convergence of optimization techniques to an optimal solution for a manufacturing framework.


Author(s):  
Dharmaraj Veeramani ◽  
Andreas H. Stinnes

Abstract This paper addresses the problem of process plan generation and optimization for dual-spindle/dual-turret CNC mill-turn centers (commonly referred to as four-axis turning centers) that are capable of both parallel and simultaneous machining modes. The number of alternative process plans for machining a given workpiece on this class of machines can be large, and the process plan optimization problem can, therefore, be complex. Due to the lack of a computer-aided process plan generation and optimization system, these highly flexible machines are being used in industry today as dedicated, mass-production machines. In this paper, we present research (being conducted in close cooperation with industry) on the development of a computer-aided process planning system for four-axis turning centers. In particular, we describe the representation schemes and Tabu Search based strategy for process plan generation and optimization, and present results demonstrating the effectiveness of this approach.


Author(s):  
M. Marefat ◽  
J. Britanik

Abstract This research focuses on the development of an object-oriented case-based process planner which combines the advantages of the variant and generative approaches to process planning. The case-based process planner operates on general 3D prismatic parts, represented by a collection of features (eg: slots, pockets, holes, etc.). Each feature subplan is developed by the case-based planner. Then the feature subplans are combined into the global process plan for the part via a hierarchical plan merging mechanism. Abstracted feature subplans correspond to cases, which are used in subsequent planning operations to solve new problems. The abstracting and storing of feature subplans as cases is the primary mechanism by which the planner learns from its previous experiences to become more effective and efficient. The computer-aided process planner is designed to be extensible and flexible through the effective use of object-oriented principles.


Author(s):  
Martin Helgoson ◽  
Lihui Wang ◽  
Robin Karlsson ◽  
Mohammad Givehchi ◽  
Mikael Tedeborg

In global enterprises an essential challenge is how to enable efficient sharing of knowledge, capacity, and resources in order to meet demands on speed, flexibility and adaptability. This paper highlights challenges and aspects regarding framework and technical platform for process planning that enable global multi-site collaboration. To get an industrial perspective, this topic is discussed in the context of Sandvik Coromant’s globally distributed application centers. Further on, function block technology as enabling technology to achieve flexible and adaptable process planning as a part of the framework is presented and discussed together with results from the on-going research work.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Dereje Tekilu Aseffa ◽  
Harish Kalla ◽  
Satyasis Mishra

Money transactions can be performed by automated self-service machines like ATMs for money deposits and withdrawals, banknote counters and coin counters, automatic vending machines, and automatic smart card charging machines. There are four important functions such as banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification which are furnished with these devices. Therefore, we need a robust system that can recognize banknotes and classify them into denominations that can be used in these automated machines. However, the most widely available banknote detectors are hardware systems that use optical and magnetic sensors to detect and validate banknotes. These banknote detectors are usually designed for specific country banknotes. Reprogramming such a system to detect banknotes is very difficult. In addition, researchers have developed banknote recognition systems using deep learning artificial intelligence technology like CNN and R-CNN. However, in these systems, dataset used for training is relatively small, and the accuracy of banknote recognition is found smaller. The existing systems also do not include implementation and its development using embedded systems. In this research work, we collected various Ethiopian currencies with different ages and conditions and applied various optimization techniques for CNN architects to identify the fake notes. Experimental analysis has been demonstrated with different models of CNN such as InceptionV3, MobileNetV2, XceptionNet, and ResNet50. MobileNetV2 with RMSProp optimization technique with batch size 32 is found to be a robust and reliable Ethiopian banknote detector and achieved superior accuracy of 96.4% in comparison to other CNN models. Selected model MobileNetV2 with RMSProp optimization has been implemented through an embedded platform by utilizing Raspberry Pi 3 B+ and other peripherals. Further, real-time identification of fake notes in a Web-based user interface (UI) has also been proposed in the research.


2020 ◽  
Author(s):  
Chathuranga M. Wijerathna Basnayaka ◽  
Dushantha Nalin K. Jayakody

With the advancement in drone technology, in just a few years, drones will be assisting humans in every domain. But there are many challenges to be tackled, communication being the chief one. This paper aims at providing insights into the latest UAV (Unmanned Aerial Vehicle) communication technologies through investigation of suitable task modules, antennas, resource handling platforms, and network architectures. Additionally, we explore techniques such as machine learning and path planning to enhance existing drone communication methods. Encryption and optimization techniques for ensuring long−lasting and secure communications, as well as for power management, are discussed. Moreover, applications of UAV networks for different contextual uses ranging from navigation to surveillance, URLLC (Ultra-reliable and low−latency communications), edge computing and work related to artificial intelligence are examined. In particular, the intricate interplay between UAV, advanced cellular communication, and internet of things constitutes one of the focal points of this paper. The survey encompasses lessons learned, insights, challenges, open issues, and future directions in UAV communications. Our literature review reveals the need for more research work on drone−to−drone and drone−to−device communications.


Author(s):  
Abdullah Alwadie

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 10pt; mso-fareast-font-family: SimSun; mso-themecolor: text1; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">Induction motors are work-horse of the industry and major element in energy conversion. The replacement of the existing non-adjustable speed drives with the modern variable frequency drives would save considerable amount of electricity. A proper control scheme for variable frequency drives can enhance the efficiency and performance of the drive. This paper attempt to provide a rigorous review of various control schemes for the induction motor control and provides critical analysis and guidelines for the future research work. A detailed study of sensor based control schemes and sensor-less control schemes has been investigated. The operation, advantages, and limitations of the various control schemes are highlighted and different types of optimization techniques have been suggested to overcome the limitations of control techniques</span>


Author(s):  
T. Yu

Modularity is widely used in system analysis and design such as complex engineering products and their organization, and modularity is also the key to solving optimization problems efficiently via problem decomposition. We first discover modularity in a system and then leverage this knowledge to improve the performance of the system. In this chapter, we tackle both problems with the alliance of organizational theory and evolutionary computation. First, we cluster the dependency structure matrix (DSM) of a system using a simple genetic algorithm (GA) and an information theoretic-based metric. Then we design a better GA through the decomposition of the optimization problem using the proposed DSM clustering method.


Sign in / Sign up

Export Citation Format

Share Document