An Experimental Study on Dynamic Constitutive Relationship of 7075-T651 Aluminum Alloy

2013 ◽  
Vol 816-817 ◽  
pp. 84-89
Author(s):  
Yong Gang Kang ◽  
Yuan Yang ◽  
Jie Huang ◽  
Jing Hang Zhu

7075-T651 aluminum alloy are widely used in aeronautical applications such as wing panels, but there is no corresponding constitutive model for it now. In this paper, the flow behavior of 7050-T651 aluminum alloy was investigated by Split Hopkinson Pressure Bar (SHPB) and quasi-static compression experiment system. The strain hardening parameters were obtained by quasi-static compression experiment data, and the strain rate hardening parameters at various strain rates (1000-3000s-1) and room temperature, and the thermal softening parameter at various temperatures (20-300°C) where strain rate is 3000s-1 were obtained by SHPB experiment data. Then the constitutive equation of 7075-T651 aluminum alloy is obtained based on Johnson-Cook constitutive equation model.

2006 ◽  
Vol 532-533 ◽  
pp. 125-128 ◽  
Author(s):  
Xiu Li Fu ◽  
Xing Ai ◽  
Song Zhang ◽  
Yi Wan

Accurately material constitutive model is essential to understand and predict machining process. High temperature split Hopkinson pressure bar (SHPB) test system is used to investigate flow stress behavior and characteristics of 7050-T7451 aluminum alloy. Specimens are tested from 200°C to 550°C at intervals of 50°C and room temperature, at strain-rate of 2800s-1. The experimental results show that flow stress is strongly dependent on temperature as well as strain rate, flow stress decreases with the increase of temperature, while increase with the increasing of strain rate. The material parameters are determined for both Johnson-Cook constitutive equation and modified Johnson-Cook constitutive equation. The modified JC equation is more suitable for expressing the dynamic behavior of 7050-T7451 aluminum alloy.


2020 ◽  
Vol 1012 ◽  
pp. 89-93
Author(s):  
Anderson Oliveira da Silva ◽  
Ricardo Pondé Weber ◽  
Sergio Neves Monteiro

This work evaluates the mechanical and dynamic behavior of recycled polycarbonate (rPC) from industrial waste. This study aims to verify whether the recycled process adopted for polycarbonate promotes both mechanical and dynamic properties values under compressive stress, similar to those found for virgin polycarbonate. The mechanical recycling of the rPC was carried out using the thermoforming technique in a thermal press. Two tests were carried out to evaluate the dynamic response of rPC. The quasi-static compression test was performed on a universal machine. The dynamic in a split Hopkinson pressure bar was performed with three different strain rates. The results showed that the mechanical and primary recycling adopted in this work promoted values of yield stress in compression (77 MPa) and dynamic (up to 118 MPa), close to or superior to those reported so far in the literature.


2010 ◽  
Vol 658 ◽  
pp. 193-196
Author(s):  
Masakazu Tane ◽  
Tae Kawashima ◽  
Keitaro Horikawa ◽  
Hidetoshi Kobayashi ◽  
Hideo Nakajima

Dynamic and quasi-static compression tests were conducted on lotus-type porous iron with porosity of about 50% using the split Hopkinson pressure bar method and universal testing machine, respectively. In the dynamic compression parallel to the pore direction, a plateau stress region appears where deformation proceeds at nearly constant stress, while the plateau stress region does not appear in the quasi-static compression. The plateau stress region is probably caused by the buckling deformation of matrix iron which occurs only in the dynamic compression. In contrast, the compression perpendicular to the orientation direction of pores exhibits no plateau-stress regions in the both dynamic and quasi-static compression.


Author(s):  
Yihang Fan ◽  
Bing Wang ◽  
Zhaopeng Hao

In this study, the effects of strain rate and temperature on the flow stress of Inconel718 were analyzed by Split Hopkinson Pressure Bar (SHPB) experiment and quasi-static compression experiment. The classical JC constitutive model was established by combining the quasi-static compression experiment with the SHPB experiment. According to the effects of different grain sizes and [Formula: see text] phase on dislocation pile-up, the dislocation pile-up theory was introduced to modify the JC constitutive model. The modified constitutive model was compiled in FORTRAN language, and VUMAT user material subroutine was called and secondary development was carried out to establish the polycrystalline simulation model with different grain sizes. The uniaxial tensile and compression simulation process of polycrystal with different grain sizes was performed. Through comparing the simulation results with the experimental data. The correlation coefficient R, between the simulation and experimental values, is 0.97,981, and the average relative error is only 3.72%. The accuracy of the modified constitutive model was verified.


2009 ◽  
Vol 83-86 ◽  
pp. 661-671
Author(s):  
A. Habibzadeh ◽  
M.H. Sadeghi ◽  
B. Davoodi ◽  
B. Jabbaripoor

In order to simulate manufacturing processes, it is essential to have accurate information about mechanical behaviour of material for different deformation conditions depending on the type of the process. In finite element (FE) analysis based techniques for simulation, a constitutive equation is needed to model the mechanical behaviour of material. In the case of metal cutting, the Johnson and Cook (JC) flow stress model is the most suitable constitutive equation to be used in simulation since it contains the effects of strain, strain-rate and temperature. It is needed to evaluate the parameters and constants of the JC model to make it applicable in FE simulations. There are several ways to evaluate the parameters of the equation: experimental such as high strain-rate compression tests called “Split Hopkinson Pressure Bar” which is relatively complicated and expensive technique requiring special testing apparatus; and analytical approach based on Oxley’s theory. An integral method containing quasi-static compression and machining tests have been used in this paper to evaluate the JC equation parameters by fitting data from both tests for a Ti-alloy (Ti6Al4V). Finally the estimated JC model is validated by some other machining tests.


2011 ◽  
Vol 291-294 ◽  
pp. 1131-1135
Author(s):  
Guo He Li ◽  
Yu Jun Cai ◽  
Hou Jun Qi

By electronic universal testing machine and Split Hopkinson Pressure Bar, the mechanical properties data of Fe-36Ni invar alloy are gained at a range of temperature from 20°C to 800°C and strain rate from 10-3 /s to 104/s. An improved Johnson-Cook model is presented to describe the mechanical behavior of Fe-36Ni invar alloy at high temperature and high strain rate, and verified by experimental results.


Author(s):  
O. J. Ajao Et. al.

In this study, high strain rate mechanical test was conducted on ultrafine-grained AA5052 aluminum alloy using the Split-Hopkinson Pressure Bar experiment. The AA5052 aluminum alloy was processed via multiaxial forging under cryogenic condition at two different cycles  to achieve grain refinement and ultimately, increase in strength of the material. The average strain rates that the specimens were subjected to during the Split-Hopkinson Pressure Bar experiment ranges from 1000 s-1 to 5000 s-1 at an increment of 1000 s-1. The EBSD map shows that the average grain size of the AA5052 aluminum alloys for the samples processed at 4-cycles is approximately ~900 nm while the samples processed at 6-cycles have a lower average grain size of approximately ~700 nm due to being subjected to more plastic deformation during the processing. The high strain rate deformation process of both specimens was dominated by thermal softening with minima strain hardening effect. During the deformation, the maximum flow stress experienced by samples that was processed at 4-cycles is 410 MPa at 5000 s-1 strain rate while samples processed at 6-cycles has 494 MPa at 3000 s-1. Strain hardenability is not dominant in the deformation mechanism but relative to AA5052 CF (4-cycles), AA5052 CF (6-cycles) has a better strain hardening exponent as the strain rate increases. Both specimens have the highest strain hardening exponent at 1000 s-1 which is 0.1544 and 0.134 for AA5052 CF (4-cycles) and AA5052 CF (6-cycles), respectively. Our results show that AA5052 CF (6-cycles) possesses better mechanical properties under high strain rate in comparison with AA5052 CF (6-cycles).


2016 ◽  
Vol 693 ◽  
pp. 621-628 ◽  
Author(s):  
Xi Guo Xue ◽  
Li Jing Xie ◽  
Tao Wang

By conducting the quasi-static compression and split Hopkinson pressure bar testing,the flow strain - stress curves under strain rate range of 0.0001-1000/s and temperature range of normal-400°C of different volume fraction SiC particles reinforced metal matrix composite SiCp/6063Al were obtained. The commonly used Johnson-Cook constitutive model in metal materials was applied in this research. And on the basis of it, the influence of volume fraction to flow stress was utilized to establish the equivalent and homogeneous constitutive model.


2013 ◽  
Vol 535-536 ◽  
pp. 497-500 ◽  
Author(s):  
Zhi Wu Zhu ◽  
Guo Zheng Kang ◽  
Dong Ruan ◽  
Yue Ma ◽  
Guo Xing Lu

5083 aluminum alloy was investigated with respect to its uniaxial dynamic compressive properties over a range of strain rates using the split Hopkinson pressure bar (SHPB). The dynamic stress-strain curves of this alloy were obtained for strain rates from 1000 s-1 to 6000 s-1. Effects of strain rate, the samples size and anti-impact capability were analyzed. The experimental results show that under impaction loading, 5083 aluminum alloy has a remarkable strengthening response to strain rate and size; in particular, the responded stress increases with increasing strain rate, which implies that this alloy has high strength and high anti-impact capability.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Jianyin Lei ◽  
Lintao Li ◽  
Zhihua Wang ◽  
Feng Zhu

Abstract Comprehensive knowledge of strain rate-dependent viscoelastic properties of bony materials is necessary to understand the mechanisms of bone fracture under impact loading conditions (e.g., falls, traffic accidents, and military environments). Although the mechanical properties of bones have been studied for several decades, the high strain rate data and corresponding material parameters of the rate-dependent constitutive models are still limited. In this study, split Hopkinson pressure bar technique was used to test bovine cortical bones, to obtain the rate-dependent stress–strain curves in two directions (along and perpendicular to the bone fibers). A constitutive relationship comprising two terms was then applied to identify the material constants with strain rate effect and viscoelastic properties. In this model, the linear elasticity was combined with nonlinear viscoelasticity components to describe the overall nonlinear strain rate dependence. The presented data give strong experimental evidence and basis for further development of numerical biomechanical models to simulate human cortical bone fracture.


Sign in / Sign up

Export Citation Format

Share Document