Comprehensive Evaluation on Performance of PSA Blended Fabrics

2013 ◽  
Vol 821-822 ◽  
pp. 317-320
Author(s):  
Xiao Wen Luo ◽  
Zhi Qing Shu ◽  
Jun Li

To reveal specific wearing property and principle of polysulfonamide (PSA) blended fabric, this paper aims to make a comparative study of the performance of new PSA blended fabric based on mechanical property, thermal protective performance and, at the same time, explore the performance gap between the different fabrics. Based on the gray fixed weight clustering analysis of gray system theory, several PSA blended fabric have been proved with excellent comprehensive performance, these provided a basis for the selection of thermal protective clothing fabrics.

2018 ◽  
Vol 89 (16) ◽  
pp. 3244-3259 ◽  
Author(s):  
Sumit Mandal ◽  
Simon Annaheim ◽  
Andre Capt ◽  
Jemma Greve ◽  
Martin Camenzind ◽  
...  

Fabric systems used in firefighters' thermal protective clothing should offer optimal thermal protective and thermo-physiological comfort performances. However, fabric systems that have very high thermal protective performance have very low thermo-physiological comfort performance. As these performances are inversely related, a categorization tool based on these two performances can help to find the best balance between them. Thus, this study is aimed at developing a tool for categorizing fabric systems used in protective clothing. For this, a set of commercially available fabric systems were evaluated and categorized. The thermal protective and thermo-physiological comfort performances were measured by standard tests and indexed into a normalized scale between 0 (low performance) and 1 (high performance). The indices dataset was first divided into three clusters by using the k-means algorithm. Here, each cluster had a centroid representing a typical Thermal Protective Performance Index (TPPI) value and a typical Thermo-physiological Comfort Performance Index (TCPI) value. By using the ISO 11612:2015 and EN 469:2014 guidelines related to the TPPI requirements, the clustered fabric systems were divided into two groups: Group 1 (high thermal protective performance-based fabric systems) and Group 2 (low thermal protective performance-based fabric systems). The fabric systems in each of these TPPI groups were further categorized based on the typical TCPI values obtained from the k-means clustering algorithm. In this study, these categorized fabric systems showed either high or low thermal protective performance with low, medium, or high thermo-physiological comfort performance. Finally, a tool for using these categorized fabric systems was prepared and presented graphically. The allocations of the fabric systems within the categorization tool have been verified based on their properties (e.g., thermal resistance, weight, evaporative resistance) and construction parameters (e.g., woven, nonwoven, layers), which significantly affect the performance. In this way, we identified key characteristics among the categorized fabric systems which can be used to upgrade or develop high-performance fabric systems. Overall, the categorization tool developed in this study could help clothing manufacturers or textile engineers select and/or develop appropriate fabric systems with maximum thermal protective performance and thermo-physiological comfort performance. Thermal protective clothing manufactured using this type of newly developed fabric system could provide better occupational health and safety for firefighters.


2012 ◽  
Vol 433-440 ◽  
pp. 3070-3075
Author(s):  
Ji Lin He ◽  
Zheng Yuan ◽  
Xue Min Zou

Aiming at the evalution and selection of multi-process plans in CAPP, a general kind of fuzzy comprehensive evalution is proposed according to the principle of fuzzy consistent relation and fuzzy consistent matrix and the correlation of gray system theory, and detailed evalution step is given. Three kind of the process plans are evaluated with the method of fuzzy comprehensive evaluation. The fuzzy synthetic estimation module is founded based on the product quality , manufacturing cost and production cycle. It has been adopted to cases in production and has realized the optimization of process schemes in CAPP.


2020 ◽  
Vol 38 (3) ◽  
pp. 659-672
Author(s):  
Sylwia Krzemińska ◽  
Agnieszka Greszta ◽  
Pamela Miśkiewicz

The aim of this study was to investigate the effects of aerogel application on the thermal properties of textile packages intended for use in protective clothing. The packages were prepared in the form of removable inserts filled with aerogel, differing in terms of fabric and design. The developed packages were tested for resistance to the three major types of heat: radiant, convective, and contact. The package variant with superior thermal performance was also evaluated for water vapor resistance. The package after incorporation of aerogel was found to approximately double radiant and convective heat resistance, with an approx. eightfold improvement for contact heat at the highest test temperature 250℃. Threshold time increased from (17.7±0.7) s to (139.9±4.9) s for the optimum aerogel-enhanced package variant with the greatest number of pouches, which met the criteria of the highest performance level. The thermal conductivity and thermal resistance of three fabrics selected for testing were tested in order to determine their basic thermal insulation properties. In general, packages containing a larger number of narrower pouches exhibited higher thermal protective performance. The results show that the developed textile packages with aerogel can be successfully used in thermal protective clothing.


2013 ◽  
Vol 796 ◽  
pp. 634-638
Author(s):  
Shuai Liu ◽  
Dong Yan Wu ◽  
Xiu E Bai

High-temperature protective clothing is one kind of the most widely used protective clothing. This research regarded the thermal protective clothes for labors work in high-temperature metallurgical steel iron workshop as the study object. In the form of questionnaires, according to the actual high temperature working environment, we extracted the necessary wear performances for thermal protective clothing as factors on the questionnaire survey. Then we issued survey questionnaires to labors work in different workshop in a major metallurgical steel iron industry. By analyzing the statistical information with SPSS, we discussed the subjective performances of the overalls mainly from the protective performance and comfortable performance. The results indicated that the pure cotton overalls, which were used for the investigated metallurgical steel iron enterprise, fall short of the satisfaction requirements in all aspects, for example, thermal insulation, flame retardant, moisture vapor transmission, abrasion resistance and strength. As a result, the study could point out the drawbacks of the high-temperature overalls for ironworkers used in present. This research could have a certain guiding significance in the development and improvement on performances of high-temperature protective overalls. To sum up, this paper could provide scientific basis for future researches to improve the functionalities and wearabilities of the high-temperature protective overall for the ironworkers.


Tekstilec ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 136-148
Author(s):  
Nataliia Ostapenko ◽  
◽  
Marina Kolosnichenko ◽  
Larysa Tretiakova ◽  
Tatyana Lutsker ◽  
...  

A computational-experimental method of material selection for thermal protective clothing design is proposed in this article. The intended operating temperature of the garment lies within the range of 40−170 °С. The prereq¬uisite for the research was the lack of information regarding changes in the physical-mechanical and ergonomic characteristics of material assemblies during their use under high-temperature conditions. During the initial stage of research, there was a problem associated with the selection of the most important and the exclusion of the least significant indicators, in order to further reduce the number of experimental tests in laboratory and industrial conditions. The authors used the method of expert evaluations to solve the problems related to the selection of the most significant indicators for material assemblies. Material assemblies were formed by vary¬ing the combinations of heat-resistant, heat-insulation and lining layers of materials. Initial information for the proposed method was obtained from the experimental tests of sixteen material assemblies. According to the results of the ranking, the main parameters of material assemblies were identified as follows: the temperature range for which the use of clothing is intended, thickness, mass per unit density, rupture resistance, relative tear¬ing elongation, change in linear dimensions during mechanical loads, air permeability and change in assembly thickness during cyclic loads. It was established that the assembly that includes heat-resistant material of the Nomex comfort N.307 220 top, Nomex Serie 100 heat-insulation lining and Nomex TER 135 lining provides the necessary level of protection, reliability and ergonomics, and meets cost requirements.


Sign in / Sign up

Export Citation Format

Share Document