moisture vapor
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6205
Author(s):  
Hyun-Ah Kim

This study examined the moisture vapor permeability and thermal wear comfort of ecofriendly fiber-embedded woven fabrics in terms of the yarn structure and the constituent fiber characteristics according to two measuring methods. The moisture vapor permeability measured using the upright cup (CaCl2) method (JIS L 1099A-1) was primarily dependent on the hygroscopicity of the ecofriendly constituent fibers in the yarns and partly influenced by the pore size in the fabric because of the yarn structure. On the other hand, the moisture vapor resistance measured using the sweating guarded hot plate method (ISO 11092) was governed mainly by the fabric pore size and partly by the hygroscopicity of the constituent ecofriendly fibers. The difference between the two measuring methods was attributed to the different mechanisms in the measuring method. The thermal conductivity as a measure of the thermal wear comfort of the composite yarn fabrics was governed primarily by the pore size in the fabric and partly by the thermal characteristics of the constituent fibers in the yarns. Lastly, considering market applications, the Coolmax®/Tencel sheath/core fabric appears useful for winter warm feeling clothing because of its the good breathability with low thermal conductivity. The bamboo and Coolmax®/bamboo fabrics are suitable for summer clothing with a cool feel because of their high thermal conductivity with good breathability. Overall, ecofriendly fibers (bamboo and Tencel) are of practical use for marketing environmentallyfriendly high-performance clothing.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3543
Author(s):  
Parand R. Riley ◽  
Pratik Joshi ◽  
Sina Azizi Machekposhti ◽  
Ritesh Sachan ◽  
Jagdish Narayan ◽  
...  

In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.


2021 ◽  
pp. 112972982110504
Author(s):  
Paul Bainbridge ◽  
Paul Browning ◽  
Stéphanie F Bernatchez ◽  
Casey Blaser ◽  
Guido Hitschmann

Background: Catheter insertion sites are commonly covered by transparent film dressings, offering protection of the insertion site from external contaminants and securement of the catheter while allowing site observation through a clear window. Currently, there is considerable focus on creating IV film dressings with ever-increasing moisture vapor transmission rates (MVTR) to prevent the accumulation of moisture under the film and reduce the risk of infection. These increasingly high MVTR IV dressings are often promoted as superior to IV dressings with lesser MVTR values. Methods: Since there are different methods to determine MVTR, we chose to test a series of commercially available dressings with two standard methods to compare the results and better understand the information provided by this measurement. We used European Standard EN 13726 to test the MVTR of seven different IV dressings with two different methods (upright and inverted). Results: We measured a range of MVTR values from 773 to 2838 g/m2/day for the upright method and from 845 to 30,530 g/m2/day for the inverted method for the seven IV dressings tested. Three dressings showed statistically different MVTR values with the two test methods. Conclusions: The MVTR test method (upright or inverted) used and considered for IV dressing product selection matters because the results obtained can be very different. We suggest that the upright method is better suited for IV dressings because they are not in constant contact with fluid. We conclude that the inverted method alone is not adequate to compare IV dressings.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1157
Author(s):  
Hyun-Ah Kim

This study examined the effects of the fiber materials, fabric structural parameters, and surface modification method on the moisture vapor resistance of coated and laminated fabrics according to the measuring method in comparison with evaporative wet heat transfer method. The moisture vapor resistance (Ref) of the coated and laminated fabrics measured using evaporative wet heat transfer method was much more precise than water vapor transmission rate (WVTR) and water vapor permeability (WVP) measured using American Society for Testing and Materials (ASTM) and Japanese Industrial Standard (JIS) methods. The correlation coefficient between Ref and WVTR in the laminated and coated polyethylene terephthalate (PET) fabric specimens was the highest, i.e., −0.833, and −0.715, in coated fabric specimens. Hence, selecting an appropriate measuring method according to the fabric materials and surface modification method is very critical. According to curvilinear regression analysis, the influential factor affecting breathability of the PET fabric specimens measured using evaporative wet heat transfer method was fabric weight (R2 = 0.847) and fabric thickness (R2 = 0.872) in the laminated fabric specimens. Meanwhile, as per multiple linear regression, the most influential fabric structural parameters affecting the breathability of laminated fabric specimens measured using evaporative wet heat transfer method were the fabric density, weight/thickness, and weight followed by the fabric thickness (R2 = 0.943). These results would be valid for laminated breathable fabrics with characteristics within the range of this study and are of practical use for engineering laminated fabrics with high breathability.


Author(s):  
Abul Fazal Mazumder ◽  
Upul Attanayake ◽  
Neal S. Berke

Thin epoxy overlays are used for improving the condition and extending the service life of bridge decks. The tensile bond pull-off strength, evaluated as per ASTM C1583, is used as the performance indicator. A failure in the substrate with a tensile strength of 250 pounds per square inch (psi) or greater is considered acceptable. However, the performance of in-service bridge decks when evaluated shows inconsistent results. Such studies failed to record and correlate the parameters that influence overlay performance during testing to clarify the observed variations. Laboratory studies by several researchers have documented a distinct performance difference when the overlays are exposed to room temperatures in comparison with elevated temperatures. However, the most influential parameters, such as the variation of substrate moisture against temperature and epoxy softening under elevated temperatures, were not measured and correlated to the observed performance. This study was initiated to provide clarification of the observed performance differences by evaluating the impact of concrete age at the time of epoxy application, concrete mix ingredients, exposure conditions, concrete microstructure development, and substrate moisture and temperature on the performance of two epoxy overlays. Experimental results confirm that (i) the performance of epoxy overlays improves when the concrete mix contains slag and (ii) substrate moisture vapor pressure and epoxy softening under elevated temperature negatively affect the overlay performance.


Author(s):  
Abul Fazal Mazumder ◽  
Harsha Amunugama ◽  
Upul Attanayake

Epoxy overlays are applied on bridge decks after curing concrete in patches and repairs for 28 days. A tensile bond pull-off strength of at least 250 pounds per square inch (psi) is expected from a properly applied overlay. Even though the overlay performance at room temperature is mostly satisfactory, the performance at elevated temperatures is not convincing. The degradation of mechanical and adhesion properties of epoxy, shear stress at the concrete/overlay interface caused by thermal incompatibility, and the interface moisture vapor pressure are the commonly cited parameters for poor bond strength at elevated temperatures. A combined effect of these parameters results in the most unfavorable failure mode (which is bond failure at the concrete/overlay interface) at a strength lower than the specified limit of 250 psi. The moisture migration through concrete depends on many factors including moisture content along the depth of concrete, pore microstructure, exposure condition, and drying period. This study investigated the impact of concrete mix ingredients and surface treatments on the thin epoxy overlay bond strength. The results show that the use of concrete mixes with slag and penetrating sealant pretreatment improves the bond strength.


2021 ◽  
Vol 12 ◽  
Author(s):  
Binling Ai ◽  
Lili Zheng ◽  
Wenqi Li ◽  
Xiaoyan Zheng ◽  
Yang Yang ◽  
...  

The excessive use and disposal of plastic packaging materials have drawn increasing concerns from the society because of the detrimental effect on environment and ecosystems. As the most widely used fruit packing material, polyethylene (PE) film is not suitable for long-term preservation of some tropical fruits, such as mangos, due to its inferior gas permeability. Cellulose based film can be made from renewable resources and is biodegradable and environmental-friendly, which makes it a promising alternative to PE as a packaging material. In this study, cellulose film synthesized from delignified banana stem fibers via an ionic liquid 1-Allyl-3-methylimidazolium chloride ([AMIm][Cl]) were evaluated as packing material for mangos preservation. The moisture vapor transmission rate and gas transmission rate of the synthesized cellulose film were 1,969.1 g/(m2⋅24 h) and 10,015.4 ml/(m2⋅24 h), respectively, which are significantly higher than those of commercial PE films. The high permeability is beneficial to the release of ethylene so that contribute to extend fruit ripening period. As a result, cellulose film packaging significantly decreased the disease and color indexes of mangos, while prolonged the storage and shelf life of marketable fruits. In addition, the cellulose film was decomposed in soils in 4 weeks, indicating an excellent biodegradability as compared to the PE plastic film.


Sign in / Sign up

Export Citation Format

Share Document