A Novel Trajectory Tracking Control Method for a Nonholonomic Mobile Robot with System Uncertainties and Disturbances

2013 ◽  
Vol 823 ◽  
pp. 193-198
Author(s):  
Run Zhou Zhao ◽  
Xi Zheng Zhang ◽  
Cai Hong Shi ◽  
Wei Chen

This paper focuses on the trajectory tracking problem of mobile robots with system uncertainties and disturbances. With the integration of a kinematic controller and a dynamic controller, a hybrid control method is presented. Firstly, an adaptive kinematic controller is proposed through the kinematic model and backstepping method. Secondly, a neural network dynamic controller is proposed, with the consideration of system uncertainties and disturbances. The stability of the proposed control scheme is verified via the Lyapunov method and Barbalat lemma. Finally, results of circular trajectory simulation have illustrated the effectiveness of the present control scheme.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Haiqiang Zhang ◽  
Hairong Fang ◽  
Dan Zhang ◽  
Qi Zou ◽  
Xueling Luo

Parallel mechanisms with redundant actuation are attracting numerous scholars’ research interest due to their inherent advantages. In this paper, an efficient trajectory tracking control scheme for the new redundantly actuated parallel mechanism by integrating force/position hybrid control with the combination of inertia feed-forward control and back propagation (BP) neural network PID control is proposed. The dynamic models including the joint space and task space are formulated explicitly in efficient and compact form by means of the principle of virtual work and d’Alembert formulations. The force/position hybrid control is implemented to perform trajectory tracking and optimize the driving force configuration in MATLAB/Simulink environment, before being applied to an actual parallel mechanism. The illustrative simulation results demonstrate that the force/position hybrid control scheme is available to provide good trajectory tracking performance. Simultaneously, the feasibility of the proposed control scheme is verified by comparison analysis with the aforementioned conventional control method.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zhi Li ◽  
Bo You ◽  
Liang Ding ◽  
Haibo Gao ◽  
Fengxiang Huang

Wheeled mobile robots (WMRs) in real complex environments such as on extraterrestrial planets are confronted with uncertain external disturbances and strong coupling of wheel-ground interactions while tracking commanded trajectories. Methods based on sliding mode control (SMC) are popular approaches for these situations. Traditional SMC has some potential problems, such as slow convergence, poor robustness, and excessive output chattering. In this paper, a kinematic-based feed-forward control model is designed for WMRs with longitudinal slippage and applied to the closed-loop control system for active compensation of time-varying slip rates. And a new adaptive SMC method is proposed to guide a WMR in trajectory tracking missions based on the kinematic model of a general WMR. This method combines the adaptive control method and a fast double-power reaching law with the SMC method. A complete control loop with active slip compensation and adaptive SMC is thus established. Simulation results show that the proposed method can greatly suppress chattering and improve the robustness of trajectory tracking. The feasibility of the proposed method in the real world is demonstrated by experiments with a skid-steered WMR on the loose-soil terrain.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1951
Author(s):  
Shun-Hung Tsai ◽  
Yi-Ping Chang ◽  
Hung-Yi Lin ◽  
Luh-Maan Chang

A robust trajectory tracking control scheme for quadrotor unmanned aircraft vehicles under uncertainties is proposed herein. A tracking controller combined with the sliding mode and integral backstepping is performed for position and attitude tracking. The stability of the trajectory tracking controller of the quadrotor is investigated via Lyapunov stability analysis. By incorporating force and torque disturbances into numerical simulations, the results demonstrate the effectiveness of the proposed quadrotor trajectory controller. Finally, the experiments validate the feasibility of the proposed controller.


2021 ◽  
Vol 67 (9) ◽  
pp. 433-444
Author(s):  
Youyu Liu ◽  
Yi Li ◽  
Xuyou Zhang ◽  
Bo Chen

To suppress the chattering of manipulators under heavy-load operations, a control method called fuzzy equivalence & terminal sliding mode (FETSM) was applied to the trajectory tracking of motion curves for manipulators. Based on the switching term of the equivalent sliding mode (ESM), a fuzzy parameter matrix processed by the simple fuzzy rules was introduced, and the fuzzy switching term was obtained. By summing the fuzzy switching term and the equivalent term of the equivalence and a terminal sliding mode (ETSM), the control law of the FETSM for manipulators was obtained. On this basis, the stability of the system was analysed and the finite arrival time of it was deduced. On the premise of ensuring the stability of the system, the fuzzy rules and membership functions were designed for the fuzzy constants in the fuzzy switching term. Simulation tests show that the proposed FETSM can ensure sufficient trajectory-tracking precision, error convergence speed, and robustness. Compared with the ETSM, the proposed FETSM can reduce the chattering time by 94.75 % on average; compared with the proportion-integral-differential (PID) control method, the maximum chattering amplitude by the FETSM can be reduced by at least 99.21 %. Thus, the proposed FETSM is suitable for those manipulators under heavy-load operations.


Author(s):  
Ruo Zhang ◽  
Yuanchang Liu ◽  
Enrico Anderlini

To achieve a fully autonomous navigation for unmanned surface vessels (USVs), a robust control capability is essential. The control of USVs in complex maritime environments is rather challenging as numerous system uncertainties and environmental influences affect the control performance. This paper therefore investigates the trajectory tracking control problem for USVs with motion constraints and environmental disturbances. Two different controllers are proposed to achieve the task. The first approach is mainly based on the backstepping technique augmented by a virtual system to compensate for the disturbance and an auxiliary system to bound the input in the saturation limit. The second control scheme is mainly based on the normalisation technique, with which the bound of the input can be limited in the constraints by tuning the control parameters. The stability of the two control schemes is demonstrated by the Lyapunov theory. Finally, simulations are conducted to verify the effectiveness of the proposed controllers. The introduced solutions enable USVs to follow complex trajectories in an adverse environment with varying ocean currents.


Author(s):  
Alberto Luviano-Juárez ◽  
John Cortés-Romero ◽  
Hebertt Sira-Ramírez

In this article, a multivariable control design scheme is proposed for the reference trajectory tracking task in a kinematic model of a mobile robot. The control scheme leads to time-varying linear controllers accomplishing the reference trajectory tracking task. The proposed controller design is crucially based on the flatness property of the system leading to controlling an asymptotically decoupled set of chains of integrators by means of a linear output feedback control scheme. The feedforward linearizing control scheme is invoked and complemented with the, so called, generalized proportional integral (GPI) control scheme. Numerical simulations, as well as laboratory experimental tests, are presented for the assessment of the proposed design methodology.


2005 ◽  
Vol 29 (2) ◽  
pp. 247-265
Author(s):  
Zhen Cai ◽  
Chun-Yi Su

In this paper, an optimal fuzzy control scheme is presented to achieve trajectory tracking for the Pendubot, an underactuated robot by combining linear optimal control theory and linear regulator theory with the Takagi-Sugeno fuzzy methodology. The stability of the entire closed-loop fuzzy system is analyzed by the designed optimal fuzzy controller. The real-time application of the proposed algorithm on the Pendubot is also addressed.


2020 ◽  
Vol 44 (2) ◽  
pp. 228-233
Author(s):  
Xuefeng Han ◽  
Mingda Ge ◽  
Jicheng Cui ◽  
Hao Wang ◽  
Wei Zhuang

Trajectory tracking is a problem of emphasis for the mobile robot. In this study, a coordinate transformation method was used to build a kinematic model of the wheeled mobile robot. A traditional proportional-integral-derivative control method was researched and improved by combining it with a neural network. A neural network proportional-integral-derivative trajectory tracking control method was thus designed, and a simulation experiment was performed using Simulink. The results show that in circular trajectory tracking control, the maximum errors of the X axis, Y axis, and θ were approximately 2.1 m, 2.3 m, and 0.4 rad, respectively, and that the system remained stable after running for 10 s. In straight-line trajectory tracking control, the maximum errors of the X axis, Y axis, and θ were approximately −0.8 m, 1.3 m, and 0.3 rad, respectively, and the system remained stable after running for 8 s. The error was relatively small, and the effect of trajectory tracking control was good. The studied method had good performance in terms of wheeled mobile robot trajectory tracking control and is worthy of further promotion and application.


2013 ◽  
Vol 419 ◽  
pp. 718-724
Author(s):  
De Xin Xu ◽  
Yan Hui Wei ◽  
Kun Peng He

In order to solve the problem of trajectory tracking of the Quad-rotor UAV, a trajectory tracking control method based on rodrigues formula is proposed in this paper, which can transform the problem of position control to attitude control, thus we can solve the problem of the characteristics of nonlinear, coupled, multivariate and underactuated. A attitude stabilized controller is designed by the Rodrigues formula of rigid rotation. The Lyapunov stability analysis proved the stability of the controller. The simulation result proved that this approach method solve the problem of the trajectory tracking of the Quad-rotor UAV.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2401
Author(s):  
Yasir Mehmood ◽  
Jawad Aslam ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
Kuaanan Techato ◽  
...  

Recently, formation flying of multiple unmanned aerial vehicles (UAVs) found numerous applications in various areas such as surveillance, industrial automation and disaster management. The accuracy and reliability for performing group tasks by multiple UAVs is highly dependent on the applied control strategy. The formation and trajectories of multiple UAVs are governed by two separate controllers, namely formation and trajectory tracking controllers respectively. In presence of environmental effects, disturbances due to wind and parametric uncertainties, the controller design process is a challenging task. This article proposes a robust adaptive formation and trajectory tacking control of multiple quad-rotor UAVs using super twisting sliding mode control method. In the proposed design, Lyapunov function-based adaptive disturbance estimators are used to compensate for the effects of external disturbances and parametric uncertainties. The stability of the proposed controllers is guaranteed using Lyapunov theorems. Two variants of the control schemes, namely fixed gain super twisting SMC (STSMC) and adaptive super twisting SMC (ASTSMC) are tested using numerical simulations performed in MATLAB/Simulink. From the results presented, it is verified that in presence of disturbances, the proposed ASTSMC controller exhibits enhanced robustness as compared to the fixed gain STSMC.


Sign in / Sign up

Export Citation Format

Share Document