scholarly journals Trajectory-Tracking Control for Manipulators Based on Fuzzy Equivalence and a Terminal Sliding Mode

2021 ◽  
Vol 67 (9) ◽  
pp. 433-444
Author(s):  
Youyu Liu ◽  
Yi Li ◽  
Xuyou Zhang ◽  
Bo Chen

To suppress the chattering of manipulators under heavy-load operations, a control method called fuzzy equivalence & terminal sliding mode (FETSM) was applied to the trajectory tracking of motion curves for manipulators. Based on the switching term of the equivalent sliding mode (ESM), a fuzzy parameter matrix processed by the simple fuzzy rules was introduced, and the fuzzy switching term was obtained. By summing the fuzzy switching term and the equivalent term of the equivalence and a terminal sliding mode (ETSM), the control law of the FETSM for manipulators was obtained. On this basis, the stability of the system was analysed and the finite arrival time of it was deduced. On the premise of ensuring the stability of the system, the fuzzy rules and membership functions were designed for the fuzzy constants in the fuzzy switching term. Simulation tests show that the proposed FETSM can ensure sufficient trajectory-tracking precision, error convergence speed, and robustness. Compared with the ETSM, the proposed FETSM can reduce the chattering time by 94.75 % on average; compared with the proportion-integral-differential (PID) control method, the maximum chattering amplitude by the FETSM can be reduced by at least 99.21 %. Thus, the proposed FETSM is suitable for those manipulators under heavy-load operations.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2401
Author(s):  
Yasir Mehmood ◽  
Jawad Aslam ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
Kuaanan Techato ◽  
...  

Recently, formation flying of multiple unmanned aerial vehicles (UAVs) found numerous applications in various areas such as surveillance, industrial automation and disaster management. The accuracy and reliability for performing group tasks by multiple UAVs is highly dependent on the applied control strategy. The formation and trajectories of multiple UAVs are governed by two separate controllers, namely formation and trajectory tracking controllers respectively. In presence of environmental effects, disturbances due to wind and parametric uncertainties, the controller design process is a challenging task. This article proposes a robust adaptive formation and trajectory tacking control of multiple quad-rotor UAVs using super twisting sliding mode control method. In the proposed design, Lyapunov function-based adaptive disturbance estimators are used to compensate for the effects of external disturbances and parametric uncertainties. The stability of the proposed controllers is guaranteed using Lyapunov theorems. Two variants of the control schemes, namely fixed gain super twisting SMC (STSMC) and adaptive super twisting SMC (ASTSMC) are tested using numerical simulations performed in MATLAB/Simulink. From the results presented, it is verified that in presence of disturbances, the proposed ASTSMC controller exhibits enhanced robustness as compared to the fixed gain STSMC.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Difei Liu ◽  
Zhiyong Tang ◽  
Zhongcai Pei

A novel variable structure compensation PID control, VSCPID in short, is proposed for trajectory tracking of asymmetrical hydraulic cylinder systems. This new control method improves the system robustness by adding a variable structure compensation term to the conventional PID control. The variable structure term is designed according to sliding mode control method and therefore could compensate the disturbance and uncertainty. Meanwhile, the proposed control method avoids the requirements for exact knowledge of the systems associated with equivalent control value in SMC that means the controller is simple and easy to design. The stability analysis of this approach is conducted with Lyapunov function, and the global stability condition applied to choose control parameters is provided. Simulation results show the VSCPID control can achieve good tracking performances and high robustness compared with the other control methods under the uncertainties and varying load conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zhi Li ◽  
Bo You ◽  
Liang Ding ◽  
Haibo Gao ◽  
Fengxiang Huang

Wheeled mobile robots (WMRs) in real complex environments such as on extraterrestrial planets are confronted with uncertain external disturbances and strong coupling of wheel-ground interactions while tracking commanded trajectories. Methods based on sliding mode control (SMC) are popular approaches for these situations. Traditional SMC has some potential problems, such as slow convergence, poor robustness, and excessive output chattering. In this paper, a kinematic-based feed-forward control model is designed for WMRs with longitudinal slippage and applied to the closed-loop control system for active compensation of time-varying slip rates. And a new adaptive SMC method is proposed to guide a WMR in trajectory tracking missions based on the kinematic model of a general WMR. This method combines the adaptive control method and a fast double-power reaching law with the SMC method. A complete control loop with active slip compensation and adaptive SMC is thus established. Simulation results show that the proposed method can greatly suppress chattering and improve the robustness of trajectory tracking. The feasibility of the proposed method in the real world is demonstrated by experiments with a skid-steered WMR on the loose-soil terrain.


Sign in / Sign up

Export Citation Format

Share Document