Microstructure and Mechanical Properties of Dissimilar Ferritic and Austenitic Steel Joints with an Intermediate Inconel-182 Buttering Layer

2009 ◽  
Vol 83-86 ◽  
pp. 449-456 ◽  
Author(s):  
A.M. Shariatpanahi ◽  
Hassan Farhangi

In this study, microstructure and mechanical properties of dissimilar weld joints between 2.25Cr-1Mo ferritic steel and 316L austenitic stainless steel, with and without an Inconel-182 buttering layer, have been investigated. The buttering layer widths produced on the machined edges of the ferritic steel plate were 3 and 5 mm. The dissimilar weld joints were butt-welded using a SMAW process with Inconel-182 electrodes. The results indicate that the ferritic base metal dilution effects are minimized due to buttering and a more uniform distribution of Fe, Ni, Cr and Nb contents is established over a broad region within the fusion zone. Moreover, a microstructure consisting of combined columnar and equiaxed dendrite with interdendritic Nb-rich particles is developed within the fusion zone as a result of buttering. Mechanical tests show that the average hardness, tensile ductility and impact energy of the weld metal were enhanced with increasing width of the buttering, while tensile strength properties were unaffected. It is observed that fracture surfaces of tensile specimens exhibit ductile features composed of ductile tear ridges with numerous interspersed dimples. However, the dominant fracture mode is noted to change from interdendritic to transdendritic with the use of a buttering layer.

2022 ◽  
Vol 905 ◽  
pp. 44-50
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of welding wire composition on microstructure and mechanical properties of welded joint in Al-Mg-Si alloy were studied by electrochemical test, X-ray diffraction (XRD) analysis and metallographic analysis. The results show that the weld zone is composed of coarse columnar dendrites and fine equated grains. Recrystallized grains are observed in the fusion zone, and the microstructure in the heat affected zone is coarsened by welding heat. The hardness curve of welded joint is like W-shaped, the highest hardness point appears near the fusion zone, and the lowest hardness point is in the heat affected zone. The main second phases of welded joints are: matrix α-Al, Mg2Si, AlMnSi, elemental Si and SiO2. The addition of rare earth in welding wire can refine the grain in weld zone obviously, produce fine grain strengthening effect, and improve the electrochemical performance of weld.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2743
Author(s):  
Wen Dong ◽  
Rongrong Huang ◽  
Hongyun Zhao ◽  
Xiangtao Gong ◽  
Bo Chen ◽  
...  

Laser penetration welding of magnesium alloys and pure titanium TA2 with unequal thickness was performed. Mg base metal with different Al content (AZ31B, AZ61A, AZ91D) was used to investigate the influence of Al element in microstructure and mechanical properties of Mg/Ti dissimilar joints. The results revealed that the change of Mg base metal did not influence the weld appearance of the joints. Three kinds of joint all presented the best mechanical property when the laser power was 3500 W. With the increase content of Al elements in Mg base metal, a reaction layer was observed which was identified as Ti3Al. The highest enrichment of Al element was obtained and its fraction reached 19.31 at% at the AZ91/TA2 interface. The chemical potential gradient of Al from AZ91 to Ti alloy was higher than that from the other two base metals based on thermodynamic calculation. The maximum fracture load reached 3597 N when AZ61 was employed as the base metal and the fracture position was the Ti base metal. AZ31/TA2 joints failed at the weld seam without necking due to the rapid propagation of cracks at the Mg/Ti interface. The AZ91/TA2 joint failed inside the Mg fusion zone with necking at the middle area of the weld, which resulted from the precipitation of brittle phases such as Mg–Al, Ti–Al phases in the fusion zone of Mg alloys.


2013 ◽  
Vol 586 ◽  
pp. 249-252 ◽  
Author(s):  
Pavel Sohaj ◽  
Vít Jan

The paper presents results obtained during evaluation of dissimilar weld joints of creep-resistant steels. During high temperature exposure of dissimilar weld joints, alloying elements were redistributed across the weld interface. These diffusion effects can cause local changes of microstructure and have a direct effect on local mechanical properties in weld interface area. Carbon and nitrogen have the strongest influence on changes of mechanical properties of steels. . These local changes of mechanical properties have a strong influence on the reliability and the service live of the whole welded structures. The dissimilar joints of the austenitic steel/martenzitic steel type was studied. Laboratory weld joints were prepared and annealed at different temperatures for different time periods. Microhardness profiles across the weld interface were measured and the influence of long-term, high temperature exposure on the changes of local microhardness was evaluated. Results were compared with pseudo-binary phase diagrams and with the literature.


Sign in / Sign up

Export Citation Format

Share Document