Response of Perpetual Pavement under Different Axle Heavy Truck

2013 ◽  
Vol 838-841 ◽  
pp. 1173-1181
Author(s):  
Shi Jie Ma ◽  
Xiao Ming Huang

To investigate suitability of the perpetual pavement under ultra-heavy loads, a test road was constructed on expressway in Shandong province of China. There were five pavement structures include semi-rigid asphalt pavement, each was instrumented with gages for measuring the strains of asphalt base layer, the vertical stress of subgrade, temperature of asphalt layers. The analysis of the strain data indicated that the strain values are affected by the temperature, the vehicle load, axle type, and the pavement structure combination. To research the response of different structure, tested different axle and load at different temperature, then different pavement response models were developed that accounts for layer thickness, axles load, pavement temperature and equivalent modulus of pavement foundation. The models provides good references under heavy vehicle loading and China local climate, it will be useful for perpetual pavement design.

2009 ◽  
Vol 10 (SI) ◽  
pp. 151-165 ◽  
Author(s):  
Yongshun Yang ◽  
Jincheng Wei ◽  
Wang Lin ◽  
David Timm ◽  
Gerald Huber

Author(s):  
Yunyan Huang ◽  
Mohamad Molavi Nojumi ◽  
Leila Hashemian ◽  
Alireza Bayat

Including insulation layers in pavement structures has become a common strategy to minimize frost penetration in cold regions. This study investigated the performance of two different insulation materials, extruded polystyrene board and bottom ash, in a test road in Edmonton, Alberta, Canada, eight years after construction. The two insulation materials were used in a fully instrumented test road, including three insulated sections 20 m in length. The insulated sections are as follows: the first section has 1 m of bottom ash (B. Ash), the second section has a 10 cm polystyrene layer (Poly-10), and the third section has a 5 cm polystyrene layer (Poly-5). Both B. Ash and polystyrene layers were placed on top of the subgrade layer, at a depth of 70 cm from the surface. A conventional section next to these three sections was used as the control section. Volumetric water content data and temperature variation were used to analyze the influence of the insulation materials on the subgrade. It was concluded that both B. Ash and Poly-10 layers protected the subgrade from freezing. The Poly-10 section showed the lowest rate of change in subgrade temperature during the monitoring period. B. Ash and Poly-10 reduced the frost depth by 23% and 70% compared with the control section, respectively. It was concluded that Poly-10 protected the subgrade soil from freezing and excessive moisture more effectively than B. Ash; however, the temperature in the layer above the insulation layers (pavement base layer) was significantly lower during winter for the Poly-10 section.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


2016 ◽  
Vol 14 ◽  
pp. 778-786 ◽  
Author(s):  
Laura Žiliūtė ◽  
Algirdas Motiejūnas ◽  
Rita Kleizienė ◽  
Gediminas Gribulis ◽  
Igoris Kravcovas

CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 736-746
Author(s):  
Mateo E. Carvajal ◽  
Murugaiyah Piratheepan ◽  
Peter E. Sebaaly ◽  
Elie Y. Hajj ◽  
Adam J. Hand

Cold in-place recycling (CIR) of asphalt pavements is a process that has successfully been used for many years. The use of CIR for rehabilitation offers many advantages over traditional overlays due to its excellent resistance to reflective cracking and its environmentally friendly impacts. Despite the good performance and positive sustainability aspects of CIR, the structural contribution of the CIR base layer has not been well defined. In this research, CIR mixtures were designed with different asphalt emulsions. The mixtures were then subjected to dynamic modulus, repeated load triaxial, and flexural beam fatigue testing over a range of temperature and loading conditions. The performance test data generated were then used to develop CIR rutting and fatigue performance models used in the mechanistic analysis of flexible pavements. The technique used to develop the performance models leveraged the fact that the rutting and fatigue models for individual CIR mixtures were all within the 95 percent confidence interval of each other. A mechanistic analysis was conducted using the 3D-Move Mechanistic Analysis model. With the laboratory-developed performance models, the structural layer coefficient for the CIR base layer were developed for use in the 1993 AASHTO Guide for the Design of Pavement Structures. This analysis led to the determination of an average structural coefficient of the CIR base layer of 0.25.


Author(s):  
J. E. Ogbezode ◽  
A. I. Adeleke ◽  
A. S. Adebayo

The high brittle nature of pavement structures have been  carefully examined based on compressive, tensile strain and the harsh effects of fatigue cycle with reference to the base layer thicknesses and elastic strains during and after construction were examined. Subjection of asphalt and concrete-cement pavements to traffic loading and tyre pressure also influences the vertical stress and strain values for the asphalt and concrete materials under the same axial loading conditions. Using various fundamental equations under linear elastic conditions for the analysis of Asphalt and Concrete Cement structure revealed that both materials do respond differently to compressive and tensile stresses under similar mechanical conditions. Effect of compressive stresses and strains on concrete pavement is larger compare to asphalt pavement due to large thickness sub-base layer of its pavement structure. Both pavement layer thicknesses are independent of fatigue cycle under harsh traffic loading. Thus, concrete pavement has shown better fatigue resistance and less tensile strain values than asphalt pavements due to high pavement layer thickness regardless of the load distribution.


Sign in / Sign up

Export Citation Format

Share Document