Vibration control of blasting excavation of large cross-section highway tunnel over metro line

2020 ◽  
Vol 13 (17) ◽  
Author(s):  
Qinghua Qin ◽  
Jun Zhang
2013 ◽  
Vol 838-841 ◽  
pp. 1441-1446
Author(s):  
Chao Yue Zhou ◽  
Yong Fang ◽  
Ya Peng Fu ◽  
Ge Cui

It is a challenge to deal with karst in the construction of large cross-section tunnel. Under the background of Shuangbei Highway Tunnel, a new kind of grouting technology is introduced. According to hydrogeology, field tests are carried out to select grouting materials and proportion of mixture. Combined with the project practice, grouting construction technology is discussed such as grouting equipments, grouting parameters, operation technique, grouting ending standards. It has been proved that the technology is effective in tunnel construction.


2021 ◽  
Author(s):  
Jie Mei ◽  
Wanzhi Zhang ◽  
Bangshu Xu ◽  
Yongxue Zhu ◽  
Bingkun Wang

Abstract The drilling and blasting method is still the main method in mountain tunnel excavation. For large cross-section tunnel in horizontal layered rock mass, tunnel blasting often causes serious overbreak and underbreak. In this study, blasting excavation tests of tunnel upper face were conducted and failure mechanisms of surrounding rocks with weak beddings and joints were analyzed based on the Panlongshan tunnel. Then, the blasthole pattern, the cut mode, a variety of peripheral holes, the charge structure and the maximum single-hole charge were optimized. Compared with the failure characteristics, overbreak and underbreak, and deformations of surrounding rocks before and after optimization, the latter was better in tunnel contour forming and surrounding rock stability. The results show that after optimization, the large-area separation of vault rock mass is solved, the step-like overbreak of spandrel rock mass is reduced and the large-size rock blocks and underbreak are avoided. The maximum linear overbreak of vault, spandrel, and haunch surrounding rocks is decreased by 42.3%, 53.7% and 45.1%, respectively. The underbreak at the bottom of the upper face is reduced from -111.5 to - 16.5 cm. The average overbreak area is decreased by 61.1%. In addition, the displacements after optimization finally converge to the smaller values. The arch crown settlement and the horizontal convergence of haunch are reduced by about 21.6% and 18.3%, respectively. Furthermore, from the completion of blasting excavation to the stabilization of surrounding rock, it takes less time by using the optimized blasting scheme.


2020 ◽  
Vol 2 ◽  
pp. 46-57
Author(s):  
S.V. Maltsev ◽  
◽  
B.P. Kazakov ◽  
A.G. Isaevich ◽  
M.A. Semin ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6946
Author(s):  
Bartłomiej Podsiadły ◽  
Andrzej Skalski ◽  
Wiktor Rozpiórski ◽  
Marcin Słoma

In this paper, we are focusing on comparing results obtained for polymer elements manufactured with injection molding and additive manufacturing techniques. The analysis was performed for fused deposition modeling (FDM) and single screw injection molding with regards to the standards used in thermoplastics processing technology. We argue that the cross-section structure of the sample obtained via FDM is the key factor in the fabrication of high-strength components and that the dimensions of the samples have a strong influence on the mechanical properties. Large cross-section samples, 4 × 10 mm2, with three perimeter layers and 50% infill, have lower mechanical strength than injection molded reference samples—less than 60% of the strength. However, if we reduce the cross-section dimensions down to 2 × 4 mm2, the samples will be more durable, reaching up to 110% of the tensile strength observed for the injection molded samples. In the case of large cross-section samples, strength increases with the number of contour layers, leading to an increase of up to 97% of the tensile strength value for 11 perimeter layer samples. The mechanical strength of the printed components can also be improved by using lower values of the thickness of the deposited layers.


Sign in / Sign up

Export Citation Format

Share Document