Experimental Study on Hydraulic Roughness of Submerged Grass in Ecological Riverbank

2013 ◽  
Vol 838-841 ◽  
pp. 1743-1748
Author(s):  
Dian Guang Ma ◽  
Chun Xin Zhong ◽  
Wu Ning ◽  
Qing Ye ◽  
Sheng Zhu

A model experiment about the hydraulic roughness of natural turf used in riverbank was carried out in flume. To examine the rationality of experimental design, the hydraulic roughness coefficient of plexiglass-flume was tested firstly. The result was 0.0085, which is quite normal. Then the tested hydraulic roughness caused by vegetation ranges from 0.020 to 0.090 for the chosen plants, which is also acceptable. Furthermore, the tested incipient velocities of krasnozem, and paddysoil had the range of 0.55~0.65m·s-1 and 1.0~1.1m·s-1, respectively. All these experimental results are in normal range, which means that the design of this experimental is rational. Experimental research illustrate that, the roughness coefficient of plant reduces with the increasing of flow velocity. When the mean flow velocity is over 3m·s-1, Mannings n values vary between 0.025 and 0.035. This phenomenon is accord with the theoretic analysis. During the scouring process, not only the flow velocity, but also the flow duration has an obvious effect on the coarseness of vegetative bed.

2016 ◽  
Vol 48 (3) ◽  
pp. 634-645 ◽  
Author(s):  
D. Termini ◽  
T. Moramarco

The entropy-based approach allows the estimation of the mean flow velocity in open channel flow by using the maximum flow velocity. The linear relationship between the mean velocity, umax, and the mean flow velocity, um, through the dimensionless parameter Φ(M), has been verified both in natural rivers and in laboratory channels. Recently, the authors of this study investigated the reliability of the entropy-based formula in a straight channel and under different bed and side-walls' roughness conditions. The present study aims to further validate the entropy-based approach and to explore the effectiveness of entropy-based formula in high curvature channels. Results show that as the effect of the downstream variation of the channel's curvature the value of the parameter Φ(M) varies along the bend. When the bed deformation is evident, the variation of the parameter Φ(M) is strongly reduced compared to that obtained in absence of bed deformation. Results also show that the Manning's roughness coefficients determined through entropy-based formula are in agreement with those estimated by applying other literature's expressions but, unlike the latter, through the parameter Φ(M) the entropy-based formula could account for the effects due to the advective momentum transport by cross-circulation along the strongly curved reaches of the channel.


Author(s):  
Christoph Jörg ◽  
Michael Wagner ◽  
Thomas Sattelmayer

The thermoacoustic stability of gas turbines depends on a balance of acoustic energy inside the engine. While the flames produce acoustic energy, other areas like the impingement cooling system contribute to damping. In this paper, we investigate the damping potential of an annular impingement sleeve geometry embedded into a realistic environment. A cold flow test rig was designed to represent real engine conditions in terms of geometry, and flow situation. High quality data was delivered by six piezoelectric dynamic pressure sensors. Experiments were carried out for different mean flow velocities through the cooling holes. The acoustic reflection coefficient of the impingement sleeve was evaluated at a downstream reference location. Further parameters investigated were the number of cooling holes, and the geometry of the chamber surrounding the impingement sleeve. Experimental results show that the determining parameter for the reflection coefficient is the mean flow velocity through the impingement holes. An increase of the mean flow velocity leads to significantly increased damping, and to low values of the reflection coefficient.


Owing to observational difficulties the distinction between a ‘suspended’ load of solids transported by a stream and a ‘ bed-load ’ has long remained undefined. Recently, however, certain critical experiments have thrown much light on the nature of bed-load transport. In particular, it has been shown that bed-load transport, by saltation, occurs in the absence of fluid turbulence and must therefore be due to a separate dynamic process from that of transport in suspension by the internal eddy motion of a turbulent fluid. It has been further shown that the forward motion of saltating solids is opposed by a frictional force of the same order as the immersed weight of the solids, the friction coefficient approximating to that given by the angle of slip. The maintenance of steady motion therefore requires a predictable rate of energy dissipation by the transporting fluid. The fluid thrust necessary to maintain the motion is shown to be exerted by virtue of a mean slip velocity which is predictable in the same way as, and approxim ates to, the terminal fall velocity of the solid. The mean thrust, and therefore the transport rate of saltating solids, are therefore predictable in terms of the fluid velocity close to the bed, at a distance from it, within the saltation zone, of a ‘centre of fluid thrust’ analogous to the ‘centre of pressure’. This velocity, which is not directly measurable in water streams, can be got from a knowledge of stream depth and mean flow velocity. Thus a basic energy equation is obtained relating the rate of transporting work done to available fluid transporting power. This is shown to be applicable to the transport both of wind-blown sand, and of water-driven solids of all sizes and larger than that of medium sand. Though the mean flow velocity is itself unpredictable, the total stream power, which is the product of this quantity times the bed shear stress, is readily measurable. But since the mean flow velocity is an increasing function of flow depth, the transport of solids expressed in terms of total stream power must decrease with increasing flow depth/grain size ratio. This considerable variation with flow depth has not been previously recognised. It explains the gross inconsistencies found in the existing experimental data. The theoretical variation is shown to approximate very closely to that found in recent critical experiments in which transport rates were measured at different constant flow depths. The theory, which is largely confirmed by these and other earlier experiments, indicates that suspension by fluid turbulence of mineral solids larger than those of medium sands does not become appreciable until the bed shear stress is increased to a value exceeding 12 times its threshold value for the bed material considered. This range of unsuspended transport decreases rapidly, however, as the grain size is reduced till, at a certain critical size, suspension should occur at the threshold of bed movement.


2020 ◽  
Vol 17 (5) ◽  
pp. 1221-1236
Author(s):  
Hui-Huang Fang ◽  
Shu-Xun Sang ◽  
Shi-Qi Liu

Abstract The three-dimensional (3D) structures of pores directly affect the CH4 flow. Therefore, it is very important to analyze the 3D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier. The result shows that the equivalent radius of pores and throats are 1–16 μm and 1.03–8.9 μm, respectively, and the throat length is 3.28–231.25 μm. The coordination number of pores concentrates around three, and the intersection point between the connectivity function and the X-axis is 3–4 μm, which indicate the macro-pores have good connectivity. During the single-channel flow, the pressure decreases along the direction of CH4 flow, and the flow velocity of CH4 decreases from the pore center to the wall. Under the dual-channel and the multi-channel flows, the pressure also decreases along the CH4 flow direction, while the velocity increases. The mean flow pressure gradually decreases with the increase of the distance from the inlet slice. The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane, while it is relatively large in the direction perpendicular to the bedding plane. The mean flow velocity in the direction horizontal to the bedding plane (Y-axis) is the largest, followed by that in the direction horizontal to the bedding plane (X-axis), and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.


2009 ◽  
Vol 111 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Satoshi Tateshima ◽  
Kazuo Tanishita ◽  
Yasuhiro Hakata ◽  
Shin-ya Tanoue ◽  
Fernando Viñuela

Object Development of a flexible self-expanding stent system and stent-assisted coiling technique facilitates endovascular treatment of wide-necked brain aneurysms. The hemodynamic effect of self-expandable stent placement across the neck of a brain aneurysm has not been well documented in patient-specific aneurysm models. Methods Three patient-specific silicone aneurysm models based on clinical images were used in this study. Model 1 was constructed from a wide-necked internal carotid artery–ophthalmic artery aneurysm, and Models 2 and 3 were constructed from small wide-necked middle cerebral artery aneurysms. Neuroform stents were placed in the in vitro aneurysm models, and flow structures were compared before and after the stent placements. Flow velocity fields were acquired with particle imaging velocimetry. Results In Model 1, a clockwise, single-vortex flow pattern was observed in the aneurysm dome before stenting was performed. There were multiple vortices, and a very small fast flow stream was newly formed in the aneurysm dome after stenting. The mean intraaneurysmal flow velocity was reduced by ~ 23–40%. In Model 2, there was a clockwise vortex flow in the aneurysm dome and another small counterclockwise vortex in the tip of the aneurysm dome before stenting. The small vortex area disappeared after stenting, and the mean flow velocity in the aneurysm dome was reduced by 43–64%. In Model 3, a large, counterclockwise, single vortex was seen in the aneurysm dome before stenting. Multiple small vortices appeared in the aneurysm dome after stenting, and the mean flow velocity became slower by 22–51%. Conclusions The flexible self-expandable stents significantly altered flow velocity and also flow structure in these aneurysms. Overall flow alterations by the stent appeared favorable for the long-term durability of aneurysm embolization. The possibility that the placement of a low-profile self-expandable stent might induce unfavorable flow patterns such as a fast flow stream in the aneurysm dome cannot be excluded.


1997 ◽  
Vol 10 (2_suppl) ◽  
pp. 43-45
Author(s):  
M. Santoni ◽  
M. Mascalchi ◽  
M. Cellerini ◽  
A. Cuttano ◽  
G. Dal Pozzo

The aqueductal CSF and superior sagittal sinus (SSS) blood flow were quantified in 9 healthy volunteers using a Phase Contrast Cine MR technique with retrospective cardiac gating and velocity of encoding of 10 and 30 cm/s. All subjects were examined in basal conditions, during hypocapnia determined by sustained hyperventilation and during hypercapnia (>5%) obtained with rebreathing in a plastic bag. In basal conditions, the aqueductal CSF flow area showed a mean increase of 24% synchronous with the cerebral systole, whereas variations of the SSS flow area during the cardiac cycle were negligible (>9%). The mean flow velocity and volume in the SSS were 11.7 cm/s and 236 ml/min. Mean peak systolic and diastolic aqueductal CSF velocity were + 2 cm/s and −2 cm/s. Hypocapnia determined in all but one subjects a decrease of the SSS blood and aqueductal CSF velocities. During hypocapnia a decrease of the aqueductal CSF flow area was also observed. Hypercapnia was associated with a decrease of the SSS flow velocity in 3 subjects and to minor changes in the remaining 6 subjects. Hypercapnia determined an increase (up to 30%) in the peak systolic and diastolic aqueductal CSF flow velocity in 3 subjects, negligible changes in 5 subjects and a decrease of the same parameters in one subject. The aqueductal CSF flow area was decreased in 8 subjects during hypercapnia. Hypocapnia and hypercapnia are relatively simple tests which can be used to modify the intracranial hydrodynamic equilibrium in healthy subjects. Further investigations are however needed before their application to the study of intracranial hydrodynamics in patients with hydrocephalus.


1980 ◽  
Vol 47 (4) ◽  
pp. 709-714 ◽  
Author(s):  
M. P. Paidoussis ◽  
N. T. Issid ◽  
M. Tsui

This paper studies theoretically the dynamical behavior of a flexible slender cylinder in pulsating axial flow. The dynamics of the system in steady, unperturbed flow are examined first. For various sets of boundary conditions the eigenfrequencies of the system at any given flow velocity are determined, and the critical flow velocities are established, beyond which buckling (divergence) would occur. The behavior of the system in pulsating flow is examined next, establishing the existence of parametric resonances. The effects of the mean flow velocity, boundary conditions, dissipative forces, and virtual (hydrodynamic) mass on the extent of the parametric instability zones are then discussed.


2015 ◽  
Vol 29 (12) ◽  
pp. 4379-4395 ◽  
Author(s):  
Vasileios Kitsikoudis ◽  
Epaminondas Sidiropoulos ◽  
Lazaros Iliadis ◽  
Vlassios Hrissanthou

Cephalalgia ◽  
1999 ◽  
Vol 19 (5) ◽  
pp. 492-496 ◽  
Author(s):  
G Fiermonte ◽  
A Annulli ◽  
F Pierelli

Transcranial Doppler (TCD) recording was used to evaluate the mean flow velocity (MFV) and cerebrovascular reactivity to CO2 in 21 migraineurs during the interictal phase. Nine were affected by migraine with aura (MwA) and 12 by migraine without aura (MwoA). During each session the middle cerebral artery (MCA) flow velocity was examined in basal conditions, in hypocapnia after a 3-min period of hyperventilation, in basal conditions a second time, and in hypercapnia after breath-holding. The same procedure was followed in a group of 21 age-and sex-matched volunteers. Recordings were performed before (T1), during (T2), and after (T3) prophylactic treatment with flunarizine (10 mg/day for 2 months) to assess the possible effect of this drug on cerebral hemodynamics. In basal condition, increased MFV values were found in both MwA and MwoA patients. In MwA patients the reactivity index (RI) to hypocapnia was significantly increased in T1 ( p < 0.05). This abnormal cerebrovascular reactivity disappeared during flunarizine treatment (T2) and in the post-therapy period (T3).


Sign in / Sign up

Export Citation Format

Share Document