SAR Image Denoising Using an Improved Adaptive Bitateral Filter

2013 ◽  
Vol 842 ◽  
pp. 672-677
Author(s):  
Hua Zhang Wang ◽  
Qin Zhen Huang

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. The presence of speckle damages radiometric resolution, at the same time, it hampers the human interpretation and scene analysis for SAR images. On the base of studying and analyzing the mathematical model of the bilateral filter, the paper proposed a modified adaptive bilateral filter (MABF). First, it separates non-independent two-dimensional Gaussian filter into two independent one-dimensional Gaussian filter, which improves the operation speed greatly. Then through the effective noise parameter estimation, it adaptively selects optimal parameters, which improves the filtering effect. The real SAR image data is used to test the presented method and the experimental results verify that MABF is feasible and effective.

Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


2020 ◽  
Vol 12 (3) ◽  
pp. 548 ◽  
Author(s):  
Xinzheng Zhang ◽  
Guo Liu ◽  
Ce Zhang ◽  
Peter M. Atkinson ◽  
Xiaoheng Tan ◽  
...  

Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a negative effect on change detection, leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local spatial context. Two phases are designed in the methodology: (1) Generate objects based on the simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery.


2018 ◽  
Vol 10 (9) ◽  
pp. 1383 ◽  
Author(s):  
Jili Yuan ◽  
Xiaolei Lv ◽  
Rui Li

To improve the suppression effect for the speckle noise of synthetic aperture radar (SAR) images and the ability of spatiotemporal information preservation of the filtered image without losing the spatial resolution, a novel multitemporal filtering method based on hypothesis testing is proposed in this paper. A framework of a two-step similarity measure strategy is adopted to further enhance the filtering results. Firstly, bi-date analysis using a two-sample Kolmogorov-Smirnov (KS) test is conducted in step 1 to extract homogeneous patches for 3-D patch stacks generation. Subsequently, the similarity between patch stacks is compared by a sliding time-series likelihood ratio (STSLR) test algorithm in step 2, which utilizes the multi-dimensional data structure of the stacks to improve the accuracy of unchanged pixels detection. Finally, the filtered values are obtained by averaging the similar pixels in time-series. The experimental results and analysis of two multitemporal datasets acquired by TerraSAR-X show that the proposed method outperforms the other typical methods with regard to the overall filtering effect, especially in terms of the consistency between the filtered images and the original ones. Furthermore, the performance of the proposed method is also discussed by analyzing the results from step 1 and step 2.


2021 ◽  
Vol 13 (18) ◽  
pp. 3733
Author(s):  
Hoonyol Lee ◽  
Jihyun Moon

Ground-based synthetic aperture radar (GB-SAR) is a useful tool to simulate advanced SAR systems with its flexibility on RF system and SAR configuration. This paper reports an indoor experiment of bistatic/multistatic GB-SAR operated in Ku-band with two antennae: one antenna was stationary on the ground and the other was moving along a linear rail. Multiple bistatic GB-SAR images were taken with various stationary antenna positions, and then averaged to simulate a multistatic GB-SAR configuration composed of a moving Tx antenna along a rail and multiple stationary Rx antennae with various viewing angles. This configuration simulates the use of a spaceborne/airborne SAR system as a transmitting antenna and multiple ground-based stationary antennae as receiving antennae to obtain omni-directional scattering images. This SAR geometry with one-stationary and one-moving antennae configuration was analyzed and a time-domain SAR focusing algorithm was adjusted to this geometry. Being stationary for one antenna, the Doppler rate was analyzed to be half of the monostatic case, and the azimuth resolution was doubled. Image quality was enhanced by identifying and reducing azimuth ambiguity. By averaging multiple bistatic images from various stationary antenna positions, a multistatic GB-SAR image was achieved to have better image swath and reduced speckle noise.


2019 ◽  
Vol 53 (3) ◽  
pp. 30-38
Author(s):  
Houjun Wang ◽  
Hui Liu ◽  
Ning Ding ◽  
Pingping Jing ◽  
Guangyu Li

AbstractIn this paper, the problems of mariculture area segmentation and corresponding area value estimations are investigated on the basis of airborne synthetic aperture radar (SAR) images. In order to deal with a limited amount of noisy airborne SAR image data in an efficient way, an effective coarse-to-fine approach is proposed, consisting of three major components, including (1) an adaptive segmentation method for each local patch to remove noise from the ocean background, (2) a dynamic coarse-to-fine clustering method for grouping pixels to achieve image segments, and (3) a polygon-fitting-based algorithm to obtain regular borders for each region and corresponding area value. Some feasible experiments are operated based on the restricted airborne SAR images, and the effectiveness of the proposed algorithm is validated in terms of the provided pixel level evaluation annotations.


Author(s):  
S. Guillaso ◽  
T. Schmid ◽  
J. López-Martínez ◽  
O. D'Hondt

In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results.


2021 ◽  
Vol 13 (21) ◽  
pp. 4274
Author(s):  
Yingying Kong ◽  
Fang Hong ◽  
Henry Leung ◽  
Xiangyang Peng

To solve the problems such as obvious speckle noise and serious spectral distortion when existing fusion methods are applied to the fusion of optical and SAR images, this paper proposes a fusion method for optical and SAR images based on Dense-UGAN and Gram–Schmidt transformation. Firstly, dense connection with U-shaped network (Dense-UGAN) are used in GAN generator to deepen the network structure and obtain deeper source image information. Secondly, according to the particularity of SAR imaging mechanism, SGLCM loss for preserving SAR texture features and PSNR loss for reducing SAR speckle noise are introduced into the generator loss function. Meanwhile in order to keep more SAR image structure, SSIM loss is introduced to discriminator loss function to make the generated image retain more spatial features. In this way, the generated high-resolution image has both optical contour characteristics and SAR texture characteristics. Finally, the GS transformation of optical and generated image retains the necessary spectral properties. Experimental results show that the proposed method can well preserve the spectral information of optical images and texture information of SAR images, and also reduce the generation of speckle noise at the same time. The metrics are superior to other algorithms that currently perform well.


Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.


2014 ◽  
Vol 1073-1076 ◽  
pp. 1982-1986
Author(s):  
Shi Qi Huang ◽  
Hong You

Synthetic aperture radar (SAR) can obtain remote sensing data under all-weather and all-time, but the imaging principle is very complex and the right interpretation is more difficult. In this paper, using the characteristics of non-subsampled Contourlet transform (NSCT), including multi-scale, multi direction, anisotropy and shift invariant, the microscopic analysis and extraction of multi-scale features of SAR images is fully discussed. The purpose is to supply right interpretation for SAR image applications. The practical SAR image data is decomposed by NSCT and the decomposition coefficient features are extracted and discussed.


Author(s):  
D. Devapal ◽  
S. S. Kumar ◽  
R. Sethunadh

Synthetic Aperture Radar (SAR) is an all-weather, day and night satellite imaging technology where the radar is mounted on aircraft and successive pulses of radio waves are transmitted to illuminate the target scene. The signal processing of the recorded backscattered echoes produce SAR images. SAR images contain inherent multiplicative speckle noise which is formed due to the constructive and destructive interference of transmitted signals with the returning signals. Speckle noise appears as granular patterns and makes the image interpretation difficult. Non-local means approaches like Block Matching and 3D filtering (BM3D) are effective scheme for removing speckle noise from SAR images. This method gives good performance for additive noise but is not adaptive to curved edges and discontinuities that occur in SAR images affected by multiplicative noise. This paper proposes a three-step refined algorithm to adapt BM3D for despeckling multiplicative speckle noise. In the proposed scheme curvelet is used to find the transform coefficients and this modification in the transform domain improves the despeckling accuracy of BM3D. Also Wiener filtering is replaced with Importance Sampling Unscented Kalman Filtering (ISUKF) for better adapting to discontinuities in the real SAR image. An improved method of grouping is proposed here based on Manhattan distance which better adapts to constantly changing multiplicative noise statistics. A detailed comparative study is carried out on each step using various well-known performance measures. From the results, it is found that the proposed Curvelet-ISUKF-Manhattan BM3D (CIM-BM3D) method of despeckling has better values for all the performance measure and the results are also visually verified.


Sign in / Sign up

Export Citation Format

Share Document