Simulation of Drill Pipe Lateral Vibration due to Riser's Oscillation

2013 ◽  
Vol 845 ◽  
pp. 168-172
Author(s):  
Nabil Al Batati ◽  
Fakhruldin M. Hashim ◽  
William Pao

This paper attempts to explain the motion behaviour of the marine riser coupled to a drill string when the vortex induced vibration (VIV) is involved. Vibrations have been reported to have a major effect on the drilling performance, affecting the rate of penetration (ROP), causing severe damages to the drilling tools and also reduces the efficiency of the drilling process. There are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling string. Analysis of vibration in the marine riser and drill string are two topical areas that have individually received considerable attention by researchers in the past. Though these two subjects are interrelated, borne by the fact that the marine riser encapsulates and protects the drill pipe, there have been few attempts to investigate them together as a unity. Due to the complexities of the models, simplified assumptions were made in order to undertake the investigation by using staggered approach. The results were compared with the experimental and simulation data from the open literature. It was found that the maximum displacement with negative damping occurs at low frequency and rotation speed.

2013 ◽  
Vol 845 ◽  
pp. 81-85
Author(s):  
D. Sujan ◽  
C.W. Nguong ◽  
S.N.B. Lee ◽  
Mesfin G. Zewge

This paper attempts to explain the motion behaviour of the marine riser coupled to a drill string when the vortex induced vibration (VIV) is involved. Vibrations have been reported to have a major effect on the drilling performance, affecting the rate of penetration (ROP), causing severe damages to the drilling tools and also reduces the efficiency of the drilling process. There are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling string. Analysis of vibration in the marine riser and drill string are two topical areas that have individually received considerable attention by researchers in the past. Though these two subjects are interrelated, borne by the fact that the marine riser encapsulates and protects the drill pipe, there have been few attempts to investigate them together as a unity. Due to the complexities of the models, simplified assumptions were made in order to undertake the investigation by using staggered approach. The results were compared with the experimental and simulation data from the open literature. It was found that the maximum displacement with negative damping occurs at low frequency and rotation speed.


2021 ◽  
Author(s):  
Farit Rakhmangulov ◽  
Pavel Dorokhin

Abstract One of the main challenges from operating companies is the continuous reduction of well construction time. During drilling, considerable time is spent on static measurements to determine the wellbore location and to verify that the actual well path matches the planned one. The electromagnetic telemetry system (EMT) allows the taking of static directional survey measurements during connections, when the drill string is in slips. Transmitting commands to the rotary steerable system (RSS) through the EMT does not cause the drilling process to stop, which also reduces well construction time. The work describes well drilling experience with the use of the electromagnetic channel for communication with the rotary steerable system and the positive displacement downhole motor not only in horizontal section but in all well sections, starting from the top hole. Combined use of the complete logging while drilling tools (LWD) with this type of the telemetry system is a valuable finding. The article describes BHA, operational principles of this type of the telemetry system, and problems which may arise during operation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Deyang Liang ◽  
Zhichuan Guan ◽  
Yuqiang Xu ◽  
Yongwang Liu

Using various tools to obtain downhole data to reach a precise pore pressure model is an important means to predict overpressure. Most downhole tools are connected to the lower end of drill string and move with it. It is necessary to understand the motion state and dynamic characteristics of drill string, which will affect the use of downhole tools. In this paper, a drilling process considering rock-breaking process in vertical wells is simulated using finite element method. In the simulation, gravity is applied to the whole drill string. The contact force between PDC bit and formation is the weight on bit (WOB). And a rotation speed is applied to the upper end of drill string. Analysis of the results shows that the vibration amplitude of bottom hole WOB (contact force between PDC bit and formation, which is the real WOB in drilling process) is bigger than the amplitude of wellhead WOB (acquired through conversion using Hook load, which is on behalf of the WOB obtained on drilling site). Both wellhead WOB and bottom hole WOB decline with a fluctuation in drilling process. In small initial WOB and low rotation speed conditions, the fluctuation of wellhead WOB focuses on low frequency, the fluctuation of bottom hole WOB focus on high frequency, and the phase of them are not identical. In large initial WOB and high rotation speed conditions, the fluctuation of wellhead WOB and bottom hole WOB both become more irregular. As for wellhead torque and bottom hole torque, the fluctuation of them mainly focuses on low frequency. And in high rotation speed conditions, wellhead torque may become negative. The research results are beneficial to the usage of downhole tools.


1982 ◽  
Vol 104 (2) ◽  
pp. 108-120 ◽  
Author(s):  
I. E. Eronini ◽  
W. H. Somerton ◽  
D. M. Auslander

A rock drilling model is developed as a set of ordinary differential equations describing discrete segments of the drilling rig, including the bit and the rock. The end segment consists of a description of the bit as a “nonideal” transformer and a characterization of the rock behavior. The effects on rock drilling of bottom hole cleaning, drill string-borehole interaction, and tooth wear are represented in the model. Simulated drilling under various conditions, using this model, gave results which are similar to those found in field and laboratory drilling performance data. In particular, the model predicts the expected relationships between drilling rate and the quantities, weight on bit, differential mud pressure, and rotary speed. The results also suggest that the damping of the longitudinal vibrations of the drill string could be predominantly hydrodynamic as opposed to viscous. Pulsations in the mud flow are found to introduce “percussive” effects in the bit forces which seem to improve the penetration rate. However, it is known from field observations that drill pipe movements, if strong enough, may induce mud pressure surges which can cause borehole and circulation problems. Bit forces and torques are shown to be substantially coupled and the influence of certain rock parameters on variables which are measurable either at the bit or on the surface support the expectation that these signals can furnish useful data on the formation being drilled. Other results, though preliminary, show that the effects of the lateral deflections of the drill string may be large for the axial bit forces and significant for the torsional vibrations. For the latter, the unsteady nature of the rotation above the bit increases and the resistance to rotation due to rubbing contact between the drill string and the wellbore accounts for very large power losses between the surface and the bit.


2021 ◽  
Author(s):  
Efe Mulumba Ovwigho ◽  
Saleh Al Marri ◽  
Abdulaziz Al Hajri

Abstract On a Deep Gas Project in the Middle East, it is required to drill 3500 ft of 8-3/8" deviated section and land the well across highly interbedded and abrasive sandstone formations with compressive strength of 15 - 35 kpsi. While drilling this section, the drill string was constantly stalling and as such could not optimize drilling parameters. Due to the resulting low ROP, it was necessary to optimize the Drill string in order to enhance performance. Performed dynamic BHA modelling which showed current drill string was not optimized for drilling long curved sections. Simulation showed high buckling levels across the 4" drill pipe and not all the weight applied on surface was transmitted to the bit. The drilling torque, flowrate and standpipe pressures were limited by the 4" drill pipe. This impacted the ROP and overall drilling performance. Proposed to replace the 4" drill pipe with 5-1/2" drill pipe. Ran the simulations and the model predicted improved drill string stability, better transmission of weights to the bit and increased ROP. One well was assigned for the implementation. Ran the optimized BHA solution, able to apply the maximum surface weight on bit recommended by the bit manufacturer, while drilling did not observe string stalling or erratic torque. There was also low levels of shocks and vibrations and stick-slip. Doubled the on-bottom ROP while drilling this section with the same bit. Unlike wells drilled with the previous BHA, on this run, observed high BHA stability while drilling, hole was in great shape while POOH to the shoe after drilling the section, there were no tight spots recorded while tripping and this resulted in the elimination of the planned wiper trip. Decision taken to perform open hole logging operation on cable and subsequently run 7-in liner without performing a reaming trip. This BHA has been adopted on the Project and subsequent wells drilled with this single string showed similar performance. This solution has led to average savings of approximately 120 hours per well drilled subsequently on this field. This consist of 80 hours due to improved ROP, 10 hrs due to the elimination of wiper trip and a further 30 hrs from optimized logging operation on cable. In addition, wells are now delivered earlier due to this innovative solution. This paper will show how simple changes in drill string design can lead to huge savings in this current climate where there is a constant push for reduction in well times, well costs and improved well delivery. It will explain the step-by-step process that was followed prior to implementing this innovative solution.


Author(s):  
S. М. Akhmetov ◽  
M. Diarov ◽  
N. М. Akhmetov ◽  
D. T. Bizhanov ◽  
Zh. K. Zaidemova

Heavy weight drill pipe (HWDP) in wells are hollow, weighty rods with stepwise changing physical properties (for example, stiffness), and each link of the string can deform according to geometrically nonlinear laws. They are the most critical part in the drilling process, transmitting power from the drilling rig to the rock failing tool, and are in hydrodynamic and contact interaction with the borehole walls, and are always curved. This occurs due to the curvature of the well itself, and under the action of its own weight, contact forces, as well as centrifugal forces in the case of rotation of the pipe. In this case, the curvature of the HWDP axis can be significantly influenced by the geometric nonlinearity of the deformation of its pipes. A review of this issue revealed a number of poorly studied problems, which include accounting for both phy- sically and geometrically nonlinear problems, accompanied by various types of complications (loss of stability HDWP, pipe breaks, etc.), as well as other processes in the elements of a dynamic drilling system (DDS). In this paper, based on the use of modern methods for studying dynamic processes in mechanical systems, a method is proposed for studying longitudinal oscillations of a geometrically nonlinear HWDP of its stability under torsion, taking into account the physical nonlinearity in the process of its deformation. The dependences characte- rizing this process are found.


2021 ◽  
Author(s):  
Scott William Petrie ◽  
Rick Doll

Abstract Continuous Circulation Systems (CCS) have been used in the past to help drill wells where interactions between the mud weight and theformation may increaserisks, thereby allowing the well to be drilledwithout encountering drilling problems or damaging the formation, whilst reaching total depth in the planned time. Previous systems have,however,relied on people working in the red zone. This paper discusses the process of making drill pipe connections, with continuous circulation,utilising a fully automatic deployment system to add value by removing the risk of people around the drill pipe during the connection, working in conjunction with other automated rig systems todeliver the advantages of continuously circulation over each connection. The continuous circulation subs are installed in every stand of drill pipe to be used in the drilled interval and facilitate circulation while the next stand is picked up and made up to the stump. A valve manifold is utilised to divert flow from the pumps to the subs, instead of the top drive, during the connection. During each connection, circulation is maintained down the drill string, from bit to surface, at drilling rates. Once the connection has been made the continuous circulation surface equipment is disconnected from the drill string allowing drilling to resume. After deploying the continuous circulation system on a number of geothermal projects, the results of using the system for top hole and intermediate sections suggest that while drilling with low rheology water-based mud systems,a high percentage of cuttings are returned to surface while the next stand of drill pipe is being picked up,limiting any hole loading and allowing the driller to increase the rate of penetration (ROP) through these sections. Fewer hole collapse issues were observed while drilling through volcanic tuff and ash, where wellbore stability is low due to poorly consolidated rock formations, thereby reducing non-productive time associated with stuck pipe and the costs of lost bottom hole assemblies (BHA's) and sidetracks. Most Geothermal projects work on very tight budgets and geothermal exploration costs need to be kept low. Improved drilling performance has improved the viability of these projects and increased the number of exploration wells that can be drilled in a campaign by reducing the days versus depth P90 estimate, that being the 90% probability of the rig matching the days v's depth curve predicted.


2014 ◽  
Vol 548-549 ◽  
pp. 1893-1897
Author(s):  
William Pao ◽  
Fakhruldin M. Hashim

In deepwater drilling, there are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling pipe. Analyses of vibration in the marine riser and drill pipes are two topical areas that have individually received considerable attention by researchers in the past. For the marine riser, the focus was on the vortex-induced vibration (VIV) in different shear and flow regime. The focus on the drill pipes was on different vibratory modes and resonance. While these two subjects are interrelated, they have been little attempt to investigate them together as an assembly. The present paper investigated the coupling of the marine riser VIV to the drill pipe vibration when the drill bit penetrated the wellbore using coupled approach. It was found that the lateral displacement of drill pipe is most significant when the riser oscillates at lower frequency. Riser oscillation is most damaging to the drill pipe when the later also rotates at low RPM.


Author(s):  
Dundie Prasetyo ◽  
Ratnayu Sitaresmi ◽  
Suryo Prakoso

<p>Horizontal drilling technique is one of the methodologies that have been widely implemented recently to improve the production of oil and gas wells. Several directional drilling technologies can be utilized to drill the horizontal wells, vary from the simple mud motor technology to Bottom Hole Assembly (BHA) with the advanced motorized rotary steerable system. The most common challenges that are faced on horizontal drilling process are on the torque and the stick-slip throughout drilling process, which can be a technical limiter for the length of horizontal section that would be achieved. Stick-slip is the vibration <br />that occurs due to cyclical rotation acceleration and deceleration of the bit, BHA or drill string. This speed fluctuation can be zero to rate of penetration (ROP) or far in excess of twice the rotational speed measured at the surface. Stick-slip can significantly decrease the ROP, increases tool failures and damage, affects borehole quality, and impacts the data acquisition. Several studies had been done on the stick-slip prevention and mitigation throughout creation of new technology and drilling parameters envelope throughout drilling operation, however no study has ever been done on the modification of the design and <br />arrangement of the BHA itself to produce more stable BHA. Drill pipe is the longest component of the drill string and hence it has biggest contribution towards the drill string dynamic. This study will focus on the analysis of the combination of several designs of the drill-pipe and heavy weight drill-pipe (HWDP) that has different stiffness and characteristic to produce less <br />vibration, more efficient drilling operation and to create zero impact on the data acquisition measured while drilling. FEA drilling dynamic simulator was used to optimize the drill sting configuration. The calculation is made from the depth of 750 m to 2801 m. Based on the drilling simulation results of FEA modeling, it is concluded that the minimum stiffness ratio to give stability of the drill string of Well-Z7 BHA and Well-Z6 BHA is 0.012175272 and 0.07366999, respectively.</p>


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Sign in / Sign up

Export Citation Format

Share Document