Design of Tiltrotor Flight Control System in Conversion Mode Using Improved Neutral Network PID

2013 ◽  
Vol 850-851 ◽  
pp. 640-643 ◽  
Author(s):  
Cheng Peng ◽  
Xin Min Wang ◽  
Xiao Chen

Considering the high-order, time-varying and nonlinear characteristics of the tiltrotor aircraft in conversion mode, the control requirements and the specific conversion scheme are presented first. An improved back propagation (BP) neural network PID control algorithm is then proposed, utilizing the strong nonlinear mapping characteristics of neural network. In the proposed algorithm, an inertia term is added to the gradient-descent-based weight adjustment formula of the conventional BP neutral network in order to increase the convergence rate and obtain satisfactory control effects. Finally simulation results indicate the effectiveness of the proposed algorihm.

2012 ◽  
Vol 532-533 ◽  
pp. 503-507
Author(s):  
Gong Cai Xin ◽  
Wei Lun Chen ◽  
Jin Niu Tao

Applying neutral network-sliding model control design methods to large envelope flight control law of aircraft whose model parameter varies greatly with flight condition was studied in this paper. Neural network theory is used to approximately linearize the nonlinear system and cancel the errors brought with approximate inversion, and the residual error is solved by sliding model control. So it can approximate the nonlinear model accurately, and improve robustness and anti-jamming capability of the flight control system. Simulation results show the design neural network – sliding model large envelope flight controller has excellent control performance.


2013 ◽  
Vol 389 ◽  
pp. 623-631 ◽  
Author(s):  
Xiu Yan Wang ◽  
Ying Wang ◽  
Zong Shuai Li

For the flight control problem occurred in 3-DOF Helicopter System, reference adaptive inverse control scheme based on Fuzzy Neural Network model is designed. Firstly, fuzzy inference process of identifier and controller is achieved by using the network structure. Meanwhile, the neural network connection weights are used to express parameters of fuzzy inference. Then, back-propagation algorithm is adopted to amend the network connection weights in order to automatically identify the fuzzy model and adjust its membership functions and parameters, so that the actual system output of adaptive inverse controller control which is adjusted can track the reference model output. Finally, the simulation result of 3-DOF Helicopter System based on the scheme shows that the method is effective and feasible.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1350 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Wu ◽  
Xiong ◽  
Han ◽  
...  

The unmanned aerial vehicle (UAV), which is a typical multi-sensor closed-loop flight control system, has the properties of multivariable, time-varying, strong coupling, and nonlinearity. Therefore, it is very difficult to obtain an accurate mathematical diagnostic model based on the traditional model-based method; this paper proposes a UAV sensor diagnostic method based on data-driven methods, which greatly improves the reliability of the rotor UAV nonlinear flight control system and achieves early warning. In order to realize the rapid on-line fault detection of the rotor UAV flight system and solve the problems of over-fitting, limited generalization, and long training time in the traditional shallow neural network for sensor fault diagnosis, a comprehensive fault diagnosis method based on deep belief network (DBN) is proposed. Using the DBN to replace the shallow neural network, a large amount of off-line historical sample data obtained from the rotor UAV are trained to obtain the optimal DBN network parameters and complete the on-line intelligent diagnosis to achieve the goal of early warning as possible as quickly. In the end, the two common faults of the UAV sensor, namely the stuck fault and the constant deviation fault, are simulated and compared with the back propagation (BP) neural network model represented by the shallow neural network to verify the effectiveness of the proposed method in the paper.


Author(s):  
Dawei Zhang ◽  
Weilin Li ◽  
Xiaohua Wu ◽  
Xiaofeng Lv

Optimal weights are usually obtained in neural network through a fixed network conformation, which affects the practicality of the network. Aiming at the shortage of conformation design and weight training algorithm in neural network application, the back propagation (BP) neural network learning algorithm combined with simulated annealing genetic algorithm (SAGA) is put forward. The multi-point genetic optimization of neural network topology and network weights is performed using hierarchical coding schemes and genetic operations. The simulated annealing mechanism is incorporated into the Genetic Algorithm (GA) to optimize the design and optimization of neural network conformation and network weights simultaneously. The SAGA takes advantage of GA excellent ability in grasping the overall ability of the search process, also uses the SA algorithm to control the convergence of the algorithm to avoid premature phenomenon. The fault diagnosis of one certain on-board electrical control box of helicopter and one certain flight control box of aircraft autopilot were used as a test platform to simulate the algorithm. The simulation conclusions reveal that the algorithm has good convergence rate and high diagnostic accurateness.


Sign in / Sign up

Export Citation Format

Share Document