Effects of Nano-Silica Addition on Water Absorption of Glass Fiber/Epoxy Composite

2013 ◽  
Vol 853 ◽  
pp. 40-45 ◽  
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Cheng Ho Chen

Nanocomposite samples containing epoxy resin, glass fiber and 0~2 wt.% SiO2 nanopowder are prepared. The effects of SiO2 addition on the water absorption rate, glass transition temperature (Tg) and dynamic mechanical properties of the various samples are then observed. The water absorption of the nanocomposite specimens is then compared with that of pure glass fiber/epoxy composite specimens when tested in water. The results show that the addition of 2 wt.% SiO2 reduces the water absorption from 0.0704% to 0.0573%. The storage modulus with adding 2wt.% silica nanocomposite compared to the neat composite raises up 13.82%. Following the water absorption test, the mechanical properties of the samples are not obvious change. Therefore, the experimental results indicate that 2wt.% SiO2 addition is beneficial to the water resistance and dynamic mechanical properties of epoxy resin / glass fiber nanocomposites.

2016 ◽  
Vol 19 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Emanoel Henrique Portella ◽  
Daiane Romanzini ◽  
Clarissa Coussirat Angrizani ◽  
Sandro Campos Amico ◽  
Ademir José Zattera

2013 ◽  
Vol 48 (24) ◽  
pp. 3025-3034 ◽  
Author(s):  
Ilias Mouallif ◽  
Abdelkhalek Latrach ◽  
M’hamed Chergui ◽  
Abdelkader Benali ◽  
Mohammed Elghorba ◽  
...  

2013 ◽  
Vol 853 ◽  
pp. 28-33
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Kung Liang Lin ◽  
Bor Kae Chang

Nanocomposite samples containing epoxy resin, glass fiber and 0~2 wt.% SiO2 nanopowder are prepared. The effects of SiO2 addition on the chemical resistance, glass transition temperature (Tg) and dynamic mechanical properties of the various samples are then observed. The chemical resistance of the nanocomposite specimens is compared with that of pure glass fiber/epoxy composite specimens when tested in acetone. The results show that the addition of 2 wt.% SiO2 increases the value of storage modulus by 1646MPa compared to that of the sample containing no silica nanopowder. Following immersion in acetone, all the nanocomposite specimen storage modulus decreased, but the addition of SiO2 reduced the decline, where the 2 wt. % samples decrease from 11.76% reduction to 0.84% and no significant change in the Tg compared to that of the sample with no silica nanopowder. Therefore, the experimental results indicate that 2 wt.% SiO2 addition is beneficial in improving chemical resistance, glass transition temperature, and dynamic mechanical properties of epoxy resin / glass fiber nanocomposites.


2018 ◽  
Vol 27 (3) ◽  
pp. 1138-1147 ◽  
Author(s):  
Nitai Chandra Adak ◽  
Suman Chhetri ◽  
Nam Hoon Kim ◽  
Naresh Chandra Murmu ◽  
Pranab Samanta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document