The Effects of Chemical Resistance for Nanocomposite Materials via Nano-Silica Addition into Glass Fiber/Epoxy

2013 ◽  
Vol 853 ◽  
pp. 28-33
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Kung Liang Lin ◽  
Bor Kae Chang

Nanocomposite samples containing epoxy resin, glass fiber and 0~2 wt.% SiO2 nanopowder are prepared. The effects of SiO2 addition on the chemical resistance, glass transition temperature (Tg) and dynamic mechanical properties of the various samples are then observed. The chemical resistance of the nanocomposite specimens is compared with that of pure glass fiber/epoxy composite specimens when tested in acetone. The results show that the addition of 2 wt.% SiO2 increases the value of storage modulus by 1646MPa compared to that of the sample containing no silica nanopowder. Following immersion in acetone, all the nanocomposite specimen storage modulus decreased, but the addition of SiO2 reduced the decline, where the 2 wt. % samples decrease from 11.76% reduction to 0.84% and no significant change in the Tg compared to that of the sample with no silica nanopowder. Therefore, the experimental results indicate that 2 wt.% SiO2 addition is beneficial in improving chemical resistance, glass transition temperature, and dynamic mechanical properties of epoxy resin / glass fiber nanocomposites.

2013 ◽  
Vol 853 ◽  
pp. 46-52
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen

Epoxy resin nanocomposite samples containing 0~3wt.% reactive diluent and 0~3wt.% silica nanopowder are prepared. The preparation process is presented for solvent-free and greenmanufacturing. The storage modulus, loss modulus and glass transition temperature of the various samples are then evaluated via Dynamic Mechanical Analysis (DMA). For samples containing 0wt.% and 3wt.% reactive diluent, respectively, 3wt.% nanoSiO2 addition is found to increase the storage modulus by 51.06 % and 22.22 %, respectively. In addition, it is found that the loss modulus is determined principally by the level of SiO2 addition, whereas the glass transition temperature is determined mainly by the level of reactive diluent addition.


2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


2013 ◽  
Vol 787 ◽  
pp. 408-412
Author(s):  
Jiao Yan Ai ◽  
Quan Chen ◽  
Xiao Bo Wang

Two kinds of polyester bis (p-hydroxybenzoic acid) butanediolatepolyester (BDPET) and bis (p-hydroxybenzoic acid) diethylene glycol (DGPET) were synthesized through melting transesterification reaction.Then the epoxy resins were modified with BDPET or DGPET,and nanoTiO2. The composites were characterized by DSC and SEM. The experimental results showed that the polyester can act as an effective toughening modifier for the epoxy resin. The mechanical properties of the composites were greatly improved and reached to the maxium at 4wt.%PET. The PET/EP system modified by adding suitable amount of nanoTiO2have better performance.The glass transition temperature (Tg) of PET/EP and nanoTiO2/PET/EP system improved about 20°Cand 27.8°C,respectively.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Mahesh Baboo ◽  
Manasvi Dixit ◽  
Dinesh Patidar ◽  
Kananbala Sharma ◽  
Narendra Sahai Saxena

Abstract This paper focuses on the comparative evaluation of the glass transition temperature (Tg), storage modulus and thermal conductivity of trans-polyisoprene (TPI) and CdS-TPI nanocomposite. The CdS nanoparticles synthesized by chemical route are dispersed into TPI using ultrasonic vibrations. Particle size of nanocrystals is obtained from X-ray diffraction and found to be 1.84 nm. Thermo-mechanical properties (Tg and storage modulus) are measured by dynamic mechanical analyzer (DMA), while thermal conductivity is a measured using the transient plane source (TPS) technique. It is observed that glass transition temperature and thermal conductivity are higher while storage modulus and mechanical properties are lower for CdS-TPI nanocomposites than for pure TPI. This has been explained on the basis of structural changes occurring due to introduction of CdS as filler into the TPI.


1990 ◽  
Vol 68 (7) ◽  
pp. 1228-1232 ◽  
Author(s):  
Denis Duchesne ◽  
Adi Eisenberg

The thermal and dynamic mechanical properties of random butyl acrylate- and plasticized ethyl acrylate-based vinylpyridinium ionomers have been investigated. The properties of the ionomers were found to be dependent on the glass transition temperature of the matrix material. Ionomers having a glass transition temperature lower than ca. 25 °C exhibited all the features associated with the presence of phase-separated microdomains or clusters while the materials with higher glass transition temperatures were not. It was also observed that the dispersion associated with the vinylpyridinium clusters for a butyl acrylate-based ionomer with 12 mol% of ionic units occurs at ca. 25 °C. This value is very close to that observed previously by Otocka and Eirich in their study of a butadiene-based vinylpyridinium ionomer with the same ion content. Keywords: ionomers, plasticization, clustering, glass transition, dynamic mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 483
Author(s):  
Carmelo Gómez ◽  
Jorge Mira ◽  
F.J. Carrión-Vilches ◽  
Francisco Cavas

The aim of this work was to show the evolution over time of the dynamic moduli in components made of Polybutylene Terephthalate reinforced with glass fiber when they are held to temperatures close to the glass transition temperature over time. For this purpose, PBT samples reinforced with short, glass fibers of Ultradur® material with 0%, 20%, and 50% in weight content were tested. Dynamic moduli showed an increment with glass fiber content showing a nonlinear behavior with the temperature. The evolution of storage modulus was depicted by means of a modified law of mixtures with an effectiveness factor depending on temperature and fiber content, whereas the evolution over time was obtained with a time–temperature transformation generated with the TTS Data Analysis software of TA-instruments for a given temperature. Storage modulus showed a linear relationship with glass fiber content when components were held to temperatures near to their respective glass transition temperature, obtained from the maximum of loss modulus curve with temperature. In summary, the value and evolution of dynamic moduli of PBT samples improved with glass fiber content, allowing us to increase the durability of components when they are submitted to high-temperature environments.


2011 ◽  
Vol 471-472 ◽  
pp. 415-419 ◽  
Author(s):  
M. Al-Qadhi ◽  
Necar Merah ◽  
K. Mezghani

Epoxy resin is one of the most applied thermoset polymers as a matrix for Glass Fiber Reinforced Pipes (GFRP). Curing process of epoxy resin is important for the integrity of the GFRP. The present work has been conducted to determine the proper pre-curing and post-curing temperatures and duration to develop epoxy-clay nanocomposite. During this study a differential scanning calorimeter (DSC) was used to determine the glass transition temperature and hence the degree of curing. Several samples of epoxy were prepared at different pre-curing and post-curing temperatures and durations. Pre-curing temperatures ranging from 80 to 150°C and post-curing temperatures ranging from 150 to 200°C were studied. The results show that the optimum pre-curing and post-curing temperatures are 100 and 170°C, respectively. Regarding the effect of curing duration, several specimens were prepared at the same pre-curing and post-curing temperatures with different curing durations of 1, 2, and 3 hours. It was observed that beyond one hour curing, the changes in the Tg and the degree of crosslinking were negligible. Using these optimum conditions samples of epoxy-clay nanocomposites were prepared using ultrasonication. The results showed that the addition of nonoclay to epoxy resulted in a reduction of the Tg.


Sign in / Sign up

Export Citation Format

Share Document