Influence of Tool Geometry and Contact Condition on Friction Stir Welding of Al-Cu Laminated Composites

2013 ◽  
Vol 856 ◽  
pp. 16-21
Author(s):  
R. Beygi ◽  
Mohsen Kazeminezhad ◽  
A.H. Kokabi ◽  
S. Mohammad Javad Alvani ◽  
D. Verdera ◽  
...  

In this study friction stir welding of Al-Cu laminated composites were carried out by two different tool geometries. Welding procedure was carried out from both sides of Al and Cu. Analyzing cross section of welds showed that different contact conditions between shoulder and material, offers different material flow behavior which is dependent on the tool geometry. SEM analyses showed that mixing of materials in nugget region is more pronounced in the advancing side. Also XRD results indicated that welding from Cu side, leads to intermetallic formation in mixed regions.

Author(s):  
Hosein Atharifar ◽  
Radovan Kovacevic

Minimizing consumed energy in friction stir welding (FSW) is one of the prominent considerations in the process development. Modifications of the FSW tool geometry might be categorized as the initial attempt to achieve a minimum FSW effort. Advanced tool pin and shoulder features as well as a low-conductive backing plate, high-conductive FSW tools equipped with cooling fins, and single or multi-step welding processes are all carried out to achieve a flawless weld with reduced welding effort. The outcomes of these attempts are considerable, primarily when the tool pin traditional designs are replaced with threaded, Trifiute or Trivex geometries. Nevertheless, the problem remains as to how an inclined tool affects the material flow characteristics and the loads applied to the tool. It is experimentally proven that a positive rake angle facilitates the traverse motion of the FSW tool; however, few computational evidences were provided. In this study, numerical material flow and heat transfer analysis are carried out for the presumed tool rake angle ranging from −4° to 4°. Afterwards, the effects of the tool rake angle to the dynamic pressure distribution, strain-rates, and velocity profiles are numerically computed. Furthermore, coefficients of drag, lift, and side force and moment applied to the tool from the visco-plastic material region are computed for each of the tool rake angles. Eventually, this paper confirms that the rake angle dramatically affects the magnitude of the loads applied to the FSW tool, and the developed advanced numerical model might be used to find optimum tool rake angle for other aluminum alloys.


2011 ◽  
Vol 138-139 ◽  
pp. 842-847 ◽  
Author(s):  
Chun Ping Huang ◽  
Wen Liang Chen ◽  
Li Ming Ke ◽  
Huang Lu

The joining of dissimilar metals, T2 copper and Q235 mild steel was carried out by friction stir welding. The material flow of different shapes of the probe and different forms of welding joints were studied, the material flow behavior on different locations from the probe was also analyzed. The experimental results showed that the screw thread in probe is the main factor in driving material flow along the thickness direction of the weld during FSW of copper and steel, the flow morphology of the weld is significantly different with vary forms of welding joints, and the material flow on different locations from the probe are quite different from each other. Instantaneous cavity will form at the upper of the weld with the use of left screw thread probe during FSW, and if not promptly and adequate padding, it is prone to appear hole-type defects.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 337-350 ◽  
Author(s):  
Dragan Milcic ◽  
Miroslav Mijajlovic ◽  
Nenad Pavlovic ◽  
Mica Vukic ◽  
Dragan Mancic

Friction stir welding is a solid-state welding technique that utilizes thermomechanical influence of the rotating welding tool on parent material resulting in a monolith joint - weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process, mechanical energy is partially transformed into heat. Generated heat affects the temperature of the welding tool and parent material, thus the proposed analytical model for the estimation of the amount of generated heat can be verified by temperature: analytically determined heat is used for numerical estimation of the temperature of parent material and this temperature is compared to the experimentally determined temperature. Numerical solution is estimated using the finite difference method - explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool, etc. The analytical model shows that 60-100% of mechanical power given to the welding tool is transformed into heat, while the comparison of results shows the maximal relative difference between the analytical and experimental temperature of about 10%.


2016 ◽  
Vol 70 (6) ◽  
pp. 1417-1430 ◽  
Author(s):  
Shude Ji ◽  
Yue Wang ◽  
Zhengwei Li ◽  
Yumei Yue ◽  
Peng Chai

2016 ◽  
Vol 87 (1-4) ◽  
pp. 1115-1123 ◽  
Author(s):  
Yongxian Huang ◽  
Yaobin Wang ◽  
Long Wan ◽  
Haoshu Liu ◽  
Junjun Shen ◽  
...  

2020 ◽  
Author(s):  
Manoj Kumar ◽  
Ramesh Kumar ◽  
Sachin D Kore

Abstract A fully-coupled 3-D model of FSW was developed for 4 mm plates of AA6061-T6 aluminum alloy based on the Finite Volume Method (FVM) in ANSYS Fluent 14.5 software. Two types of the model; one with the tool and another without tool was developed for different tool geometry and analysis was done for temperature distribution in the workpiece as well as in tool using system coupling for first model and workpiece only in later one. A parametric study was performed at different tool rotational speed regarding temperature distribution, and material flow analysis was carried out for all tool geometries at a single rotational speed. The material behaves differently when passes through the different tool and it was affected by thermal history, viscosity and strain rate for particular tool geometry. Temperature-dependent material properties and a user-defined function (UDF) code of viscosity have been incorporated in the model considering the workpiece as a non-Newtonian viscous fluid. A better material mixing observed in case of threaded pin geometry by using a steady-state laminar flow model. All tapered tool geometries were unable to mix material properly just below and around the pin tip due to very low-velocity magnitude in this region, which may lead to a kind of defect. An asymmetric temperature distribution observed in the workpiece and at higher rotational speed peak temperature observed higher in the workpiece, and the flow of heat was more in tool. Validation of the model was done by performing experiments.


Sign in / Sign up

Export Citation Format

Share Document