Effect of Mineral Additives on Internal Relative Humidity and Dry Shrinkage of Light Weight Aggregate Concrete

2013 ◽  
Vol 857 ◽  
pp. 51-55
Author(s):  
Shu Hui Dong ◽  
Yong Ge ◽  
De Cheng Feng ◽  
Feng Ping Wang ◽  
Bao Sheng Zhang

Effect of fly ash and slag on internal relative humidity (IRH) and dry shrinkage of light weight aggregate concrete (LWC) are studied in this paper. As indicated in this test, mixed with mineral additives can reduce dry shrinkage of concrete. The more volume of fly ash and slag ash, the lower decrease speed of IRH is, which contribute to the decreases of dry shrinkage rate too. At the same curing-age and dosage, the relative humidity inside the fly ash concrete is higher than the slag one. As consequence, the rate of dry shrinkage of fly ash concrete is lower than slag concrete. Also, there is a significant linear correlation between the lowered values of IRH and dry shrinkage rate.

2019 ◽  
Vol 26 (4) ◽  
pp. 16-25
Author(s):  
Arkan Ahmed ◽  
Bayer Al-Sulayvany ◽  
Muyasser Jomma’h

This research deals with production of light weight aggregate concrete by using clayey stone aggregate, normal material (cement , sand) and some of mineral admixtures (fly ash and steel fiber ). Many trial mix were doing some of these by weighing ratio and others by volumetric ratio . We get light weight aggregate concrete (LWAC) with 24.92 N/ mm2 compressive strength and we improved mechanical properties by adding same percentage of fly ash and steel fiber (0.5 ,1 ,1.5) % of each other as a percentage weighing ratio of cement content . compressive strength increased with (7.8 , 5.2 , 2.9) % , splitting tensile strength increased with (20 ,16.71, 12)% and flexural strength increased with (24.5 , 17.9 , 8) % when adding (0.5 ,1 ,1.5) % of each steel fiber and fly ash respectively. The practical results of the current study indicates that the using clayey stone to produce (LWAC) is success and we can improved mechanical properties of this (LWAC) was produced in this research by adding fly ash and steel fiber with previously percentage.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 699
Author(s):  
Xiaoxiao Zhang ◽  
Leo Pel ◽  
Florent Gauvin ◽  
David Smeulders

Due to the requirement for developing more sustainable constructions, natural fibers from agricultural wastes, such as coir fibers, have been increasingly used as an alternative in concrete composites. However, the influence of coir fibers on the hydration and shrinkage of cement-based materials is not clear. In addition, limited information about the reinforcing mechanisms of coir fibers in concrete can be found. The goal of this research is to investigate the effects of coir fibers on the hydration reaction, microstructure, shrinkages, and mechanical properties of cement-based light-weight aggregate concrete (LWAC). Treatments on coir fibers, namely Ca(OH)2 and nano-silica impregnation, are applied to further improve LWAC. Results show that leachates from fibers acting as a delayed accelerator promote cement hydration, and entrained water by fibers facilitates cement hydration during the whole process. The drying shrinkage of LWAC is increased by adding fibers, while the autogenous shrinkage decreases. The strength and toughness of LWAC are enhanced with fibers. Finally, three reinforcement mechanisms of coir fibers in cement composites are discussed.


2021 ◽  
Vol 1090 (1) ◽  
pp. 012106
Author(s):  
Hayder Kadhem Adai Al-Farttoosi ◽  
Oday A. Abdulrazzaq ◽  
Haleem K. Hussain

2014 ◽  
Vol 26 (5) ◽  
pp. 1312-1314
Author(s):  
Gyu Yong Kim ◽  
Tae Gyu Lee ◽  
Yeonwoo Kang ◽  
Sangsoo Lee

Sign in / Sign up

Export Citation Format

Share Document