scholarly journals Mechanical Properties of Light Weight Aggregate Concrete Using Pumice as a Coarse Aggregate

2021 ◽  
Vol 1090 (1) ◽  
pp. 012106
Author(s):  
Hayder Kadhem Adai Al-Farttoosi ◽  
Oday A. Abdulrazzaq ◽  
Haleem K. Hussain
2020 ◽  
Vol 165 ◽  
pp. 04040
Author(s):  
Li Yunyun ◽  
Niu Jiangang ◽  
Yang Baosheng ◽  
Li Jingjun

In this study, lightweight aggregate concrete (LWAC) specimens with different plastics-steel fibre volumes were tested to investigate the effect of plastics-steel fibre fraction on the mechanical properties of LWAC through the experimental research and theoretical analysis. The experimental results indicated that incorporation of steel fibre into LWAC can greatly improve such mechanical properties as flexural toughness and impact resistance, but leads to a little effect on compressive strength and flexural strength.


2011 ◽  
Vol 250-253 ◽  
pp. 168-171
Author(s):  
Yan Kun Zhang ◽  
Shao Yu Zhang ◽  
Xiao Er Zhou

By finite element method, experimental results of the light-weight aggregate concrete composite slab are compared with the numerical simulation.. On the basis, nine composite slab specimen are designed. The loading process, includes the slab cracking, the yielding of steel plates, damaging of slabs are simulated, and the influencing factors, such as male pin, thickness of deck, and spacing of transverse shear reinforcing bars, etc. is studied. At last, the spacing of transverse shear reinforcing bars of light-weight aggregate concrete composite slab is given, and it is useful to the engineering design.


2019 ◽  
Vol 26 (4) ◽  
pp. 16-25
Author(s):  
Arkan Ahmed ◽  
Bayer Al-Sulayvany ◽  
Muyasser Jomma’h

This research deals with production of light weight aggregate concrete by using clayey stone aggregate, normal material (cement , sand) and some of mineral admixtures (fly ash and steel fiber ). Many trial mix were doing some of these by weighing ratio and others by volumetric ratio . We get light weight aggregate concrete (LWAC) with 24.92 N/ mm2 compressive strength and we improved mechanical properties by adding same percentage of fly ash and steel fiber (0.5 ,1 ,1.5) % of each other as a percentage weighing ratio of cement content . compressive strength increased with (7.8 , 5.2 , 2.9) % , splitting tensile strength increased with (20 ,16.71, 12)% and flexural strength increased with (24.5 , 17.9 , 8) % when adding (0.5 ,1 ,1.5) % of each steel fiber and fly ash respectively. The practical results of the current study indicates that the using clayey stone to produce (LWAC) is success and we can improved mechanical properties of this (LWAC) was produced in this research by adding fly ash and steel fiber with previously percentage.


2012 ◽  
Vol 446-449 ◽  
pp. 3369-3372 ◽  
Author(s):  
Lei Wang ◽  
Yan Lin Zhao

The concrete which take coral fragments as aggregate can solve the shortage of building materials in the ocean reef island effectively, The coral concrete shall be classified as light weight aggregate concrete from the angle of the apparent density of building materials, its basic mechanical properties are similar to ordinary light weight aggregate, but there are also significantly different. The different between coral concrete and pumecrete、haydite concrete and the basic mechanics characteristics of coral concrete were study in this paper. The intensity、development of intensity with age、stress-strain relations、failure mode under load were discussed.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 699
Author(s):  
Xiaoxiao Zhang ◽  
Leo Pel ◽  
Florent Gauvin ◽  
David Smeulders

Due to the requirement for developing more sustainable constructions, natural fibers from agricultural wastes, such as coir fibers, have been increasingly used as an alternative in concrete composites. However, the influence of coir fibers on the hydration and shrinkage of cement-based materials is not clear. In addition, limited information about the reinforcing mechanisms of coir fibers in concrete can be found. The goal of this research is to investigate the effects of coir fibers on the hydration reaction, microstructure, shrinkages, and mechanical properties of cement-based light-weight aggregate concrete (LWAC). Treatments on coir fibers, namely Ca(OH)2 and nano-silica impregnation, are applied to further improve LWAC. Results show that leachates from fibers acting as a delayed accelerator promote cement hydration, and entrained water by fibers facilitates cement hydration during the whole process. The drying shrinkage of LWAC is increased by adding fibers, while the autogenous shrinkage decreases. The strength and toughness of LWAC are enhanced with fibers. Finally, three reinforcement mechanisms of coir fibers in cement composites are discussed.


2011 ◽  
Vol 477 ◽  
pp. 280-289 ◽  
Author(s):  
Shao Wei Yao ◽  
Zhen Guo Gao ◽  
Chang Rui Wang

The properties of recycled coarse aggregate and the slump, the physical and mechanical properties and durability of recycled aggregate concrete were studied through tests. The results indicate that the slump, compressive strength and durability of concrete with recycled aggregate are lower than that of concrete with natural aggregate when recycled coarse aggregate fully absorbs water. However, the slump can be similar to that of concrete with natural aggregate. The properties of recycled aggregate concrete can be improved by strengthening the recycled coarse aggregate, and it is also found that the recycled coarse aggregate strengthened by grinding is superior to that soaked by chemical solution.


Sign in / Sign up

Export Citation Format

Share Document