Effect of pre-wetted light-weight aggregate on internal relative humidity and autogenous shrinkage of concrete

2006 ◽  
Vol 21 (1) ◽  
pp. 134-137 ◽  
Author(s):  
Ye Jiajun ◽  
Hu Shuguang ◽  
Wang Fazhou ◽  
Zhou Yufei ◽  
Liu Zhichao
2013 ◽  
Vol 857 ◽  
pp. 51-55
Author(s):  
Shu Hui Dong ◽  
Yong Ge ◽  
De Cheng Feng ◽  
Feng Ping Wang ◽  
Bao Sheng Zhang

Effect of fly ash and slag on internal relative humidity (IRH) and dry shrinkage of light weight aggregate concrete (LWC) are studied in this paper. As indicated in this test, mixed with mineral additives can reduce dry shrinkage of concrete. The more volume of fly ash and slag ash, the lower decrease speed of IRH is, which contribute to the decreases of dry shrinkage rate too. At the same curing-age and dosage, the relative humidity inside the fly ash concrete is higher than the slag one. As consequence, the rate of dry shrinkage of fly ash concrete is lower than slag concrete. Also, there is a significant linear correlation between the lowered values of IRH and dry shrinkage rate.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 699
Author(s):  
Xiaoxiao Zhang ◽  
Leo Pel ◽  
Florent Gauvin ◽  
David Smeulders

Due to the requirement for developing more sustainable constructions, natural fibers from agricultural wastes, such as coir fibers, have been increasingly used as an alternative in concrete composites. However, the influence of coir fibers on the hydration and shrinkage of cement-based materials is not clear. In addition, limited information about the reinforcing mechanisms of coir fibers in concrete can be found. The goal of this research is to investigate the effects of coir fibers on the hydration reaction, microstructure, shrinkages, and mechanical properties of cement-based light-weight aggregate concrete (LWAC). Treatments on coir fibers, namely Ca(OH)2 and nano-silica impregnation, are applied to further improve LWAC. Results show that leachates from fibers acting as a delayed accelerator promote cement hydration, and entrained water by fibers facilitates cement hydration during the whole process. The drying shrinkage of LWAC is increased by adding fibers, while the autogenous shrinkage decreases. The strength and toughness of LWAC are enhanced with fibers. Finally, three reinforcement mechanisms of coir fibers in cement composites are discussed.


2020 ◽  
Vol 12 (22) ◽  
pp. 9372
Author(s):  
Guang-Zhu Zhang ◽  
Han-Seung Lee ◽  
Xiao-Yong Wang

Ultra-high-strength paste (UHSP) combined with nanomaterials has been extensively studied. However, the research on nano-ZrO2 is limited. In this study, UHSP with various nano-ZrO2 contents is analyzed. The motivation of this study is to clarify the effects of nano-ZrO2 on the hydration products, strength, autogenous shrinkage, and hydration heat of UHSPs. The water-to-binder ratio (w/b) of the specimens is 0.2. The nano-ZrO2 content is 0, 1.5, and 3 wt.%. The strength is measured at the age of 3, 7, and 28 days. The hydration heat is measured from the mixing stage to 3 days. The hydration products are analyzed by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The autogenous shrinkage is measured from the mixing stage for 7 days using a new experimental device. The new experimental device can measure autogenous shrinkage, internal relative humidity, and internal temperature simultaneously. The following conclusions can be drawn based on the experimental studies: (1) Two stages were noticed in the autogenous shrinkage of UHSPs: a variable-temperature stage and a room-temperature stage. The cut-off point of these two stages occurred in roughly 1.5 days. Furthermore, in the room-temperature stage, there was a straight-line relationship between the autogenous shrinkage and internal relative humidity. (2) With the increase of the nano-ZrO2 amount, the compressive strength at 3 days, 7 days, and 4 weeks increased. (3) With the nano-ZrO2 increasing, the flow decreased. (4) With the nano-ZrO2 increasing, the hydration heat increased due to the physical nucleation effect of the nano-ZrO2. Furthermore, the nano-ZrO2 used in this study was chemically inert and did not take part in the cement hydration reaction based on the XRD, differential thermal, and TG data. This paper is of great significance for the development of high-strength cementitious materials doped with nano-ZrO2.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1074 ◽  
Author(s):  
Girum Urgessa ◽  
Ki-Bong Choi ◽  
Jung Yeon

Laboratory evaluations were performed to investigate the effect of internal curing (IC) by superabsorbent polymers (SAP) on the internal relative humidity (IRH), autogenous shrinkage, coefficient of thermal expansion (CTE), and strength characteristics of low water-cement ratio (w/c) mortars. Four types of SAP with different cross-linking densities and particle sizes were used. Test results showed that the SAP inclusion effectively mitigated the IRH drops due to self-desiccation and corresponding autogenous shrinkage, and the IC effectiveness tended to increase with an increased SAP dosage. The greater the cross-linking density and particle size of SAP, the less the IRH drop and autogenous shrinkage. The trend of autogenous shrinkage developments was in good agreement with that of IRH changes, with nearly linear relationships between them. Both immediate deformation (ID)-based and full response-based CTEs were rarely affected by SAP inclusions. There were no substantial losses in compressive and flexural strengths of SAP-modified mortar compared to reference plain mortar. The findings revealed that SAPs can be effectively used to reduce the shrinkage cracking potential of low w/c cement-based materials at early ages, without compromising mechanical and thermal characteristics.


2020 ◽  
Vol 10 (15) ◽  
pp. 5202 ◽  
Author(s):  
Guang-Zhu Zhang ◽  
Hyeong-Kyu Cho ◽  
Xiao-Yong Wang

In this paper, the effect of nano-silica on the autogenous shrinkage, hydration heat, compressive strength hydration products of Ultra-High Strength Concrete (UHSC) is studied. The water/binder ratio (w/b) of UHSC is 0.2. The nano-silica replaces 2% and 4% of the mass fraction of the cement in UHSCs, respectively. A new instrument was developed to simultaneously measure the autogenous shrinkage, internal relative humidity, and internal temperature of UHSC. The following results were obtained from the analysis of the experimental data: (1) The trends in the autogenous shrinking of UHSC can be divided into two stages, which are the variable temperature stage and the room temperature stage. The dividing point between the two stages occurs at the age of approximately 2 days. During the room temperature stage, the internal relative humidity and autogenous shrinkage showed a good linear relationship. (2) The compressive strength of UHSC increased significantly with the increase of nano-silica content at 3 days, 7 days, and 28 days. (3) The total accumulated heat of UHSC increased during the 72 h, with the increasing of nano-silica content. (4) The XRD data at the age of 28 days showed that the Ca(OH)2 peaks of nS2 and nS4 have a tendency to weaken due to the pozzolanic reaction, compared with the peak of nS0.


2013 ◽  
Vol 539 ◽  
pp. 35-39 ◽  
Author(s):  
Yue Li ◽  
Qian Qian Yan

The influence of water to binder (W/B), types and dosage of supplementary cementitious materials (SCM) on the internal relative humidity (IRH) and autogenous shrinkage (AS) of cement pastes caused by self-desiccation were investigated, and their relationship was discussed. The results show that, W/B is a main factor that affects IRH change and AS of cement pastes with SCM. With the decrease of W/B, IRH of cement pastes decreases, but AS of cement pastes increases. Different types and dosages of SCM affect the IRH differently; fly ash (FA) reduces AS, silica fume (SF) increases AS, and the effect of GBFS on AS is between FA and GBFS. The linear correlation between the change of IRH and AS of cement pastes with SCM is established.


Sign in / Sign up

Export Citation Format

Share Document