Sol-Gel Processing and Novel Physical Properties of PLZT 7/57/43 Ferroelectric Ceramics

2013 ◽  
Vol 873 ◽  
pp. 292-297 ◽  
Author(s):  
Ke Yu Zheng ◽  
Ya Li Ding ◽  
Ren Zhi Shao

The sol-gel process was employed to prepare (Pb1-xLax)(Zr1-yTiy)O3(PLZT) ceramics with nominal composition Pb0.93La0.07(Zr0.57Ti0.43)0.9825O3. The structure and physical properties such as dielectric, piezoelectric and ferroelectric properties were investigated. X-ray diffraction results showed that the perovskite phase PLZT was formed when the sol-gel processed powders was calcined at 600°Cfor 4 hours. nanocrystalline particles with a size of ~50nm were found. TG-DTA studies were used to analyze the thermal properties of nanopowders for understanding the reaction kinetics in them. Wafered bulk ceramic samples prepared from the sol-gel derived powders were subjected to electrical measurements, in order to determine the dielectric, piezoelectric and ferroelectric properties. The dielectric properties of the PLZTBST system are further improved and the dielectric piezoelectric properties of PLZT ceramics are found to be sensitive to the particle size of PLZT nanopowders. The dielectric piezoelectric properties of polarized PLZT ceramics can be improved with the lessening of PLZT nanopowder size. Meanwhile, the grain size of PLZT ceramics decreases.

2001 ◽  
Vol 16 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Jian-Gong Cheng ◽  
Jun Tang ◽  
Shao-Ling Guo ◽  
Jun-Hao Chu

Ba0.8Sr0.2TiO3 films were fabricated with a 0.05 M solution by a sol-gel process at temperatures between 550 and 650 °C. Analysis by x-ray diffraction, Raman spectroscopy, and scanning electron microscopy revealed that the films annealed at 650 °C showed pure perovskite phase, tetragonal structure, and columnar grains with an average grain size of 150 nm. Electrical measurements performed on the films annealed at 650 °C showed two dielectric peaks in the dielectric constant–temperature curve, a remnant polarization of 1.4 μC/cm2, a coercive field of 18.3 kV/cm, and good insulating property. The measured pyroelectric coefficient for the films annealed at 650 °C was larger than 3.1 × 10−4 C/m2K at the temperatures ranging from 10 to 26 °C and reached the maximum value of 4.1 × 10−4 C/m2K at 16 °C. The excellent pyroelectric property rendered the Ba0.8Sr0.2TiO3 films annealed at 650 °C promising for uncooled infrared detectors and thermal imaging applications.


2021 ◽  
Author(s):  
jie jiang ◽  
Lei Liu ◽  
Kuo Ouyang ◽  
Zhouyu Chen ◽  
Shengtao Mo ◽  
...  

Abstract With its excellent ferroelectric properties such as large dielectric constant and large remanent polarization, PZT thin films are extensively used in micro-sensors and other devices. In this study, the sol-gel process was used to fabricate Pb(Zr0.52Ti0.48)O3 thin films with Pb(ZrxTi1−x)O3 seed islands. The experimental consequences demonstrate that all the Pb(Zr0.52Ti0.48)O3 thin films with Pb(ZrxTi1−x)O3 seeds show pure perovskite phase with no other impurity phases, and the electrical properties of Pb(Zr0.52Ti0.48)O3 thin films modified by Pb(ZrxTi1−x)O3 seed islands with different Zr/Ti ratios are improved, such as remanent polarization increased, dielectric properties increased, coercive electric field decreased, leakage current density decreased, etc. In particular, the electrical properties of the Pb(Zr0.52Ti0.48)O3 thin films with Pb(ZrxTi1−x)O3 seed islands are the most optimal when the x is 0.52. This paper provides a new technique for optimizing the electrical properties of PZT thin films, which is of great significance for breaking through the bottleneck of the development of ferroelectric memory.


2002 ◽  
Vol 718 ◽  
Author(s):  
Reji Thomas ◽  
Shoich Mochizuki ◽  
Toshiyuki Mihara ◽  
Tadashi Ishida

AbstractGadolinium(Gd) doped ferroelectric lead lanthanum zirconate titanate (PLGZT 6/2/65/35) thin films were prepared by sol-gel spin coating technique. Fused silica and platinized silicon were used as substrates. Two-step pre-annealing heat treatment was employed to prepare crack free films. Annealing temperature was optimized though the x-ray diffraction studies to prepare films in single perovskite phase. Effects of Pb concentration and the seeding layer on the crystallization were studied. Optical transmission spectra were recorded and from this, refractive index, extinction coefficient and thickness were calculated for amorphous films on fused silica annealed at 400°C. In addition, the resultant films showed more than 60% transmission in the visible region. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. Ferroelectric properties of crystalline films were studied by plotting the P-E hysteresis loop.


2011 ◽  
Vol 418-420 ◽  
pp. 362-367
Author(s):  
Xue Liang Yang ◽  
Xiang Yun Deng ◽  
Li Ren Han ◽  
Ren Bo Yang ◽  
Yan Jie Zhang ◽  
...  

Ba0.95Ca0.05)TiO3 (BCT) ferroelectric ceramics were prepared from powders synthesized using a sol–gel process. Structural evolution of the BCT dry gels are investigated by thermal gravimetric analysis differential scanning calorimetry. It is found that BCT crystallites can be formed before 800°C. Well-sintered samples are synthesized at 1320°C for 2h. The crystal structure of the BCT ceramics is studied by XRD and ferroelectric properties of the ceramics are characterized by TF analyzer 2000. The Curie temperature Tc of the BCT ceramics is at about 130°C. The maximum dielectric constant (εr) reaches about 13678 at 130°C and hysteresis loops are measured with the temperature range from 25°C to 150°C.


2010 ◽  
Vol 148-149 ◽  
pp. 1091-1095
Author(s):  
Xiao Fen Guan ◽  
Xiang Yun Deng ◽  
Cheng Lu ◽  
Zhong Wen Tan ◽  
Yan Jie Zhang ◽  
...  

Barium zirconate titanate Ba(Ti1-yZry)O3 (BZT, y = 0.02, 0.07, 0.09, 0.12, 0.15) ceramics have been prepared by sol–gel process. All the BZTx ceramics exhibited perovskite phase detected by X-ray diffraction, and the diffraction peaks shift to lower angle with increasing the content of Zr. Dielectric susceptibilities are up to 15500, and tunability up to 74.9% under electric field 6.8 kV/cm at 100 Hz.


2009 ◽  
Vol 3 (1-2) ◽  
pp. 73-78 ◽  
Author(s):  
Elisa Mercadelli ◽  
Alessandra Sanson ◽  
Claudio Capiani ◽  
Luisa Costa ◽  
Carmen Galassi

BNBT (0.94[(Bi0.5Na0.5)TiO3]-0.06BaTiO3) nanopowders were prepared starting from an aqueous solution of inorganic salts (barium acetate, bismuth nitrate, sodium nitrate and titanium isopropoxide) either by the citrate- nitrate sol-gel combustion (SGC) or by spray drying (SD). Their chemical and microstructural properties were compared with the ones of the same system obtained by mechanical mixing of oxides (SSCO). The SD and SGC powders require temperatures 150 and 300?C lower than SSCO powder to form the perovskite phase. The chemical and physical properties of the obtained powders strongly depend on the considered chemical route. Therefore the subsequent sintering step and consequently the microstructure of the obtained ceramics differ significantly. The microstructures as well the piezoelectric properties of the sintered SGC, SD, SSCO samples are investigated and a critical comparison is presented. .


2005 ◽  
Vol 888 ◽  
Author(s):  
Yong Shi ◽  
Shiyou Xu ◽  
Sang-Gook Kim ◽  
Matthew Libera

ABSTRACTThis paper reports the development and characterization of PZT nanofibers with average diameters ranged from 50 to 150 nm for various sensing and actuation applications. PZT nano fibers have been developed by sol-gel electrospinning process. Both randomly distributed and uniaxially aligned PZT fibers were obtained from the sol-gel solution with viscosity modified by polyvinyl pyrrolidone (PVP). The diameters of the nano fibers can be further reduced or controlled for different applications. The morphology and structure of the nanofibers were examined with SEM, TEM and XRD. We used two-step process to anneal the electrospun fibers and XRD confirmed that pure perovskite phase was formed after the as-spun fibers being annealed at about 650°C. TEM results showed that the grain size of the fibers was about 10 nm. Microelectromechanical (MEMS) based micro-fabrication technologies were used to assist the development of the nano-fibers in designing the test samples, depositing and patterning the electrodes, and also testing the performance of the nano fibers. Different approaches have been explored to fabricate the uniaxially aligned nano fibers. SEM results showed that partial aligned PZT nano-fibers were obtained on the pre-patterned substrats. Interdigitated Electrodes were evaporated on the partial aligned fibers by using shadow mask. Hysteresis curve of the nano piezoelectric fibers was also obtained, however further tests are still needed to get accurate measurement. The obtained PZT nanofibers have promising application potentials in designing and enabling micro and nano devices.


Sign in / Sign up

Export Citation Format

Share Document