Structural Characteristics and Piezoelectric Properties of Electrospun Piezoelectric nanofibers

2005 ◽  
Vol 888 ◽  
Author(s):  
Yong Shi ◽  
Shiyou Xu ◽  
Sang-Gook Kim ◽  
Matthew Libera

ABSTRACTThis paper reports the development and characterization of PZT nanofibers with average diameters ranged from 50 to 150 nm for various sensing and actuation applications. PZT nano fibers have been developed by sol-gel electrospinning process. Both randomly distributed and uniaxially aligned PZT fibers were obtained from the sol-gel solution with viscosity modified by polyvinyl pyrrolidone (PVP). The diameters of the nano fibers can be further reduced or controlled for different applications. The morphology and structure of the nanofibers were examined with SEM, TEM and XRD. We used two-step process to anneal the electrospun fibers and XRD confirmed that pure perovskite phase was formed after the as-spun fibers being annealed at about 650°C. TEM results showed that the grain size of the fibers was about 10 nm. Microelectromechanical (MEMS) based micro-fabrication technologies were used to assist the development of the nano-fibers in designing the test samples, depositing and patterning the electrodes, and also testing the performance of the nano fibers. Different approaches have been explored to fabricate the uniaxially aligned nano fibers. SEM results showed that partial aligned PZT nano-fibers were obtained on the pre-patterned substrats. Interdigitated Electrodes were evaporated on the partial aligned fibers by using shadow mask. Hysteresis curve of the nano piezoelectric fibers was also obtained, however further tests are still needed to get accurate measurement. The obtained PZT nanofibers have promising application potentials in designing and enabling micro and nano devices.

Author(s):  
Yong Shi ◽  
Shiyou Xu ◽  
Sang-Gook Kim

This paper reports the fabrication of partially aligned Lead Zirconate Titanate (PZT) nanofibers with an average diameter of 150 nm by Sol-Gel Electrospinning process. Both randomly distributed and uniaxially aligned PZT fibers were obtained from the sol-gel PZT solution with viscosity modified by polyvinyl pyrrolidone (PVP). The diameters of the nano fibers can be further reduced or controlled for different applications. SEM, TEM and x-ray diffraction (XRD) are used to characterize the nano-fibers and their crystal structures. XRD confirmed that pure perovskite phase was formed after the as-spun fibers being annealed at about 650°C. Different approaches have been explored to fabricate the uniaxially-aligned PZT nano-fibers. Microelectromechanical (MEMS) based micro-fabrication technologies are used to assist the development of the nano-fibers in designing the test samples, depositing and patterning the electrodes, and also testing the performance of the nano fibers.


2009 ◽  
Vol 3 (1-2) ◽  
pp. 73-78 ◽  
Author(s):  
Elisa Mercadelli ◽  
Alessandra Sanson ◽  
Claudio Capiani ◽  
Luisa Costa ◽  
Carmen Galassi

BNBT (0.94[(Bi0.5Na0.5)TiO3]-0.06BaTiO3) nanopowders were prepared starting from an aqueous solution of inorganic salts (barium acetate, bismuth nitrate, sodium nitrate and titanium isopropoxide) either by the citrate- nitrate sol-gel combustion (SGC) or by spray drying (SD). Their chemical and microstructural properties were compared with the ones of the same system obtained by mechanical mixing of oxides (SSCO). The SD and SGC powders require temperatures 150 and 300?C lower than SSCO powder to form the perovskite phase. The chemical and physical properties of the obtained powders strongly depend on the considered chemical route. Therefore the subsequent sintering step and consequently the microstructure of the obtained ceramics differ significantly. The microstructures as well the piezoelectric properties of the sintered SGC, SD, SSCO samples are investigated and a critical comparison is presented. .


2020 ◽  
Vol 307 ◽  
pp. 93-97
Author(s):  
Bryan Andrew Balasan ◽  
Azhan Hashim ◽  
Muhammad Hafiz Mazwir ◽  
Farah Hanani Zulkifli

This paper presents the synthesis and characterization of Bi2Sr2Ca2Cu3O8+x superconducting nanowires. Bi2Sr2Ca2Cu3O8+x nanowires with Tc = 68 K were synthesized using the electrospinning process employing sol–gel precursors. A sol–gel methodology was used to obtain a homogeneous PVP solution containing Bi, Sr, Ca, and Cu oxalates. Samples were heat-treated at 120 °C to remove excess moisture, and then at 850 °C in box furnace. Bulk sample was also prepared using coprecipitation method for comparison. Based on XRD, the nanowire sample showed minimal Bi-2223 phases and apparent Bi-2212 phases. The morphology, microstructure, and crystal structure of these nanowires were examined using field emission scanning electron microscopy (FESEM) to reveal a rectangular morphology having typical wire thickness in the range of 150–1000 nm. Electrospun Bi-2223 were grinded and pressed at 0.9 GPa into pellets. DC measurements were conducted to investigate the critical transition temperature (Tc) of Bi-2223 nanowires and to compare their magnetic properties to those of coprecipitated Bi-2223 pellets. The Tc for the bulk sample is observed at 101 K and electrospun Bi-2223 at 68 K. Coprecipitated Bi-2223 was added with Pb whereas electrospun Bi-2223 does not employ Pb. These results point to the existence of utilizing of the substitution of Pb with Bi; Bi-2223 phases in pressed nanowire are less, and the potential of using electrospinning to synthesis functional Bi-2233 superconductors.


2007 ◽  
Vol 280-283 ◽  
pp. 223-226 ◽  
Author(s):  
Jin Song Pan ◽  
Xiao Wen Zhang ◽  
Ke Pi Chen ◽  
Chao Lei

(1-x)(0.64PNN-0.36PT)-x(0.91PZN-0.09PT) ferroelectric ceramics with different x were synthesized by the columbite precursor method. The phase structure and piezoelectric properties were investigated. XRD profiles implied that with the increasing of x, samples could no longer maintain the pure perovskite phase. All the compositions were found to lie within the region of the morphotropic phase boundaries (MPBs) with different contents of rhombohedral and tetragonal phases. The piezoelectric coefficients for compositions with x £ 0.30 were obviously better than those for the rest ones and the composition with x = 0.15 exhibited the largest value of d33 among all the samples. The relationship between the structure and the piezoelectric properties was discussed.


2016 ◽  
Vol 690 ◽  
pp. 126-130 ◽  
Author(s):  
Chavalit Suksri ◽  
Piewpan Parjansri ◽  
Sutatip Thonglem ◽  
Uraiwan Intatha ◽  
Sukum Eitssayeam ◽  
...  

Lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics were studied and synthesized by the seed-induced method. NaNbO3 crystal was used as seed and prepared by molten salt synthesis (MSS). The average particles size of NaNbO3 seed crystal was about 1-3 mm. Then, the NaNbO3 seed was mixed with KNN powder and ball milled for 24 h. The mixed powder was calcined at 700-900 °C and sintered at 1100 °C. The phase structure and morphology of the ceramics were investigated by X-ray diffraction and scanning electron microscope and the electrical properties were studied. The results indicated that all samples showed a pure perovskite phase. The highest density of the ceramic was 93% compared to the theoretical density. The results showed that NaNbO3seed crystal improved piezoelectric properties of KNN ceramics.


2001 ◽  
Vol 16 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Jian-Gong Cheng ◽  
Jun Tang ◽  
Shao-Ling Guo ◽  
Jun-Hao Chu

Ba0.8Sr0.2TiO3 films were fabricated with a 0.05 M solution by a sol-gel process at temperatures between 550 and 650 °C. Analysis by x-ray diffraction, Raman spectroscopy, and scanning electron microscopy revealed that the films annealed at 650 °C showed pure perovskite phase, tetragonal structure, and columnar grains with an average grain size of 150 nm. Electrical measurements performed on the films annealed at 650 °C showed two dielectric peaks in the dielectric constant–temperature curve, a remnant polarization of 1.4 μC/cm2, a coercive field of 18.3 kV/cm, and good insulating property. The measured pyroelectric coefficient for the films annealed at 650 °C was larger than 3.1 × 10−4 C/m2K at the temperatures ranging from 10 to 26 °C and reached the maximum value of 4.1 × 10−4 C/m2K at 16 °C. The excellent pyroelectric property rendered the Ba0.8Sr0.2TiO3 films annealed at 650 °C promising for uncooled infrared detectors and thermal imaging applications.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1125
Author(s):  
Dovydas Karoblis ◽  
Ramunas Diliautas ◽  
Eva Raudonyte-Svirbutaviciene ◽  
Kestutis Mazeika ◽  
Dalis Baltrunas ◽  
...  

In this study, the aqueous sol-gel method was employed for the synthesis of (1−x)SrTiO3-xBiMnO3 solid solutions. Powder X-ray diffraction analysis confirmed the formation of single-phase perovskites with a cubic structure up to x = 0.3. A further increase of the BiMnO3 content led to the formation of a negligible amount of neighboring Mn3O4 impurity, along with the major perovskite phase. Infrared (FT-IR) analysis of the synthesized specimens showed gradual spectral change associated with the superposition effect of Mn-O and Ti-O bond lengths. By introducing BiMnO3 into the SrTiO3 crystal structure, the size of the grains increased drastically, which was confirmed by means of scanning electron microscopy. Magnetization studies revealed that all solid solutions containing the BiMnO3 component can be characterized as paramagnetic materials. It was observed that magnetization values clearly correlate with the chemical composition of powders, and the gradual increase of the BiMnO3 content resulted in noticeably higher magnetization values.


2014 ◽  
Vol 538 ◽  
pp. 11-14
Author(s):  
Yang Lu Hou ◽  
Xing Hua Fu ◽  
Wen Hong Tao ◽  
Xin Jin

Mg-doped LaFeO3 thin film and Mg, Cr-doped La0.5Sr0.5FeO3 thin films were prepared by the sol-gel method. The change rules of structure and dielectric properties of the films were studied by XRD, SEM, and Agilent. The dielectric properties of La0.5Sr0.5FeO3 and LaFeO3 films were improved by the substitute with Mg and Cr. The doping amount of Mg and Cr for the optimal dielectric properties of La0.5Sr0.5FeO3 films is 45mol%, 25mol%, respectively, and for LaFeO3, the doping amount of Mg is 8mol%. The observed pure perovskite phase of the doped films suggested the dissolution of Mn, Co, and Ni in La0.5Sr0.5FeO3 crystal lattice. Mg and Cr were integrate in the lattice of LaFeO3 and La0.5Sr0.5FeO3, and mineral is single perovskite phase. The surface of the film is smooth, without cracks, surface grain size distribution and had uniform grain size.


2013 ◽  
Vol 575-576 ◽  
pp. 499-503
Author(s):  
Bin Fu ◽  
Yang Lu Hou ◽  
Wei Bing Wu ◽  
Xing Hua Fu

Mn, Co, and Ni-doped La0.5Sr0.5FeO3thin films were prepared by the sol-gel technique. The structure and dielectric properties of the films were studied by XRD, SEM, and electrical measurements. The morphology observation demonstrated these films had uniform grain size and smooth surface. The dielectric properties of La0.5Sr0.5FeO3films were improved by the replacement of Fe with Mn, Co, and Ni. The doping amount of Mn, Co, and Ni for the optimal dielectric properties of La0.5Sr0.5FeO3films is 5%, 2%, and 3%, respectively. The observed pure perovskite phase of the doped films suggested the dissolution of Mn, Co, and Ni in La0.5Sr0.5FeO3crystal lattice.


Sign in / Sign up

Export Citation Format

Share Document