Research on the Mix Design of Cement Asphalt Concrete

2014 ◽  
Vol 887-888 ◽  
pp. 838-841
Author(s):  
Yun Hua Zhang ◽  
Jin Zhao ◽  
Jun Fu ◽  
Chun Mei Yu ◽  
Tao Xiang

Effect of material mix proportion on strength of cement asphalt concrete (CAC) was studied based on 7d cleavage strength. Results indicate that the cleavage strength of CAC increase sharply with the increase of the cement content (0-6%), and the optimum content of added water and emulsified asphalt were 2% and 6% respectively while the cement content was 5%.

2018 ◽  
Vol 238 ◽  
pp. 05009
Author(s):  
Junxiao Li ◽  
Wei Fu ◽  
Xiaobo Yin

Nowadays, a large amount of work has been done in the field of emulsified asphalt cold regeneration. Three different proportions of emulsified asphalt cold recycling mixtures were designed by mixing different ratios of new aggregates and RAP, the effect of cement content and RAP content on the mixtures's water stability was studied. The results show that the addition of cement can improve the mixtures's water stability, but there is an optimum content; the mixtures's water stability reduces with the increase of RAP content.


Author(s):  
Ahmed Saidi ◽  
Ayman Ali ◽  
Wade Lein ◽  
Yusuf Mehta

The objective of this paper is to present a procedure for designing cold in-place recycling (CIR) mixtures through balancing rutting and cracking for these mixtures. Four CIR mixtures were prepared using two recycling agents (foamed and emulsified asphalts), and compacted at two gyration levels (30 and 70 gyrations). The CIR mixtures were prepared at a constant water content of 3% and a constant cement content of 1% while curing of the compacted samples was conducted by placing them in an oven for three days at 140°F (dry curing). The CoreLok device was used for measuring air voids in compacted samples. The rutting susceptibility of these mixtures was then evaluated using the asphalt pavement analyzer (APA) and dynamic complex modulus (|E*|) while resistance to cracking was assessed using the indirect tensile strength (ITS) test and fracture energy as determined using the semi-circular bend (SCB-FE) test. A demonstration of how these tests were utilized to select a performance balanced optimum binder content for each of the four CIR mixes was also presented. The developed balanced mix design approach was used successfully for designing four CIR mixtures and selecting the optimum binder content for each mix. The results also showed that using a higher compaction level leads to increasing both foamed and emulsified asphalt CIR mixtures’ ability to resist rutting. In terms of cracking, SCB-FE results showed that foamed asphalt mixtures were better at resisting cracking than emulsified asphalt CIR mixtures.


2011 ◽  
Vol 374-377 ◽  
pp. 1904-1907
Author(s):  
Yu Hua Li ◽  
Hai Xiang Li ◽  
Yu Xing Liu ◽  
Jing Yun Chen

Chip seal is most frequently used as preventive maintenance (PM) treatments on asphalt pavement. However, it’s difficult to make the performance test of chip seal in laboratory. In this paper, the specimen molding method of chip seal is established in laboratory. Firstly, considering the structure and technique condition of the original pavement, a cushion layer of asphalt concrete (AC) is used as under layer of the specimen. Secondly, the construction process of chip seal is simulated in laboratory, which includes spraying emulsified asphalt and/or glass fiber, spreading aggregate, initial rolling and conservation, post-stage rolling and conservation in interval for some time. Lastly, visual inspection and sand patch test are used to evaluate the quality of the specimen. Research results show that the method of specimen molding and test in laboratory could relatively accurately simulate, evaluate and forecast the performance of the chip seal.


2020 ◽  
Vol 21 ◽  
pp. 31-37
Author(s):  
Ali Abdulhasan Khalaf ◽  
Katalin Kopecskó

The research aims to determine the best combination of the controlling factors that govern geopolymer concrete’s mechanical and physical properties by utilizing industrial waste. Therefore, a review on the controlling factors was conducted. Firstly, it is to identify the controlling factors, namely chemical composition, alkali activation solution, water content, and curing condition. Secondly, understanding the relationship between these controlling factors and the properties of geopolymer concrete. These factors are analysed to the mix proportion components. Finally, a new proportion method is proposed based on combining ACI 211 standard and recommended molar ratios of oxides involved in geopolymer synthesis. The effect of aggregate has been taken into account by applying the absolute volume method in mix design. Based on the results of the study, it is expected to determine the optimal mix proportions based on multi-responses.


2013 ◽  
Vol 721 ◽  
pp. 420-424
Author(s):  
Guo Ju Ke ◽  
Bo Tian ◽  
Ji Liang Wang

The paper presents a new concept of ultra-filled by studying of classical aggregate filling theory. To resolve the problem involved in mix design with ultra-filled theory, a mix proportion design method of manufactured sand cement concrete is established. By calculation and test, the paper works out the rich plasma factor K1 and K2 of pavement manufactured cement concrete and the experimental result shows that the method is feasible and reasonable.


2019 ◽  
Vol 9 (11) ◽  
pp. 2285 ◽  
Author(s):  
Zhengxing Wang ◽  
Jutao Hao ◽  
Jian Yang ◽  
Yan Cao ◽  
Xiulin Li ◽  
...  

In this paper, we experiment on the hydraulic fracturing of asphalt concrete with a voids content higher than 3%, which has arisen from the possible local shear dilatancy of Quxue asphalt’s core wall of concrete core dam, the highest one of the sort constructed in the world. The model test has shown that under the sole water pressure 0.13 MPa—relevant to the pressure where the dilatancy could appear at core wall of Quxue dam—the asphalt concrete with a voids content of 3.5% underwent hydraulic fracturing. Furthermore, the asphalt concrete with a voids content of 3.0% was tested for nearly 500 h and no sign of hydraulic fracturing was found, which again confirmed the threshold requirement for a 3% voids content to the impervious asphalt concrete to the hydraulic fracture concern. According to the analysis of the test result, the theory of fracture mechanics could be applied to the hydraulic fracture of asphalt concrete with a voids content between 3.4~4.0%, which behaved during hydraulic fracturing like a quasi-brittle material, similar to concrete. Because the hydraulic fracturing could occur in the shear dilatant asphalt concrete, a proper mix proportion of asphalt concrete to a project with adverse stress state should be carefully designed to rule out the possibility of shear dilatancy.


2019 ◽  
Vol 11 (20) ◽  
pp. 5827 ◽  
Author(s):  
Xiao-Yong Wang

Material cost and CO2 emissions are among the vital issues related to the sustainability of high-strength concrete. This research proposes a calculation procedure for the mix design of silica fume-blended high-strength concrete with an optimal total cost considering various carbon pricings. First, the material cost and CO2 emission cost are determined using concrete mixture and unit prices. Gene expression programming (GEP) is used to evaluate concrete mechanical and workability properties. Second, a genetic algorithm (GA) is used to search the optimal mixture, considering various constraints, such as design compressive strength constraint, design workability constraint, range constraints, ratio constraints, and concrete volume constraint. The optimization objective of the GA is the sum of the material cost and the cost of CO2 emissions. Third, illustrative examples are shown for designing various kinds of concrete. Five strength levels (from 95 to 115 MPa with steps of 5 MPa) and four carbon pricings (normal carbon pricing, zero carbon pricing, five-fold carbon pricings, and ten-fold carbon pricings) are considered. A total of 20 optimal mixtures are calculated. The optimal mixtures were found the same for the cases of normal CO2 pricing and zero CO2 pricing. Optimal mixtures with higher strengths are more sensitive to variation in carbon pricing. For five-fold CO2 pricing, the cement content of mixtures with higher strengths (105, 110, and 115 MPa) are lower than those of normal CO2 pricing. As the CO2 pricing increases from five-fold to ten-fold, for mixtures with a strength of 110 MPa, the cement content becomes lower. Summarily, the proposed method can be applied to the material design of sustainable high-strength concrete with low material cost and CO2 emissions.


2001 ◽  
Vol 12 (2) ◽  
pp. 51-60 ◽  
Author(s):  
Yasunori Matsufuji ◽  
Tomoyuki Koyama ◽  
Kenji Funamoto ◽  
Korekiyo Ito

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmad M. Abu Abdo ◽  
S. J. Jung

The main objective of this study was to investigate the effects of hot mix asphalt material properties on the performance of flexible pavements via mechanistic approach. 3D Move Analysis software was utilized to determine rutting and cracking distresses in an asphalt concrete (AC) layer. Fourteen different Superpave mixes were evaluated by utilizing results of the Dynamic Modulus (|E⁎|) Test and the Dynamic Shear Modulus (|G⁎|) Test. Results showed that with the increase of binder content, the tendency of rutting in AC layer increased. However, with the increase of binder content, the cracking of AC layer lessened. Furthermore, when different binder grades were evaluated, results showed that with the increase of the upper binder grade number, rutting decreased, and with the increase of the lower binder grade number, rutting increased. Furthermore, analysis showed that with the increase of the lower binder grade number, higher percent of bottom up cracks would result. As a result of the analysis, binder grade should not be solely considered for cracking in AC layer; binder content and aggregate structure play a big role. Finally, results illustrated that the mechanistic approach is a better tool to determine the performance of asphalt pavement than commonly used methods.


Sign in / Sign up

Export Citation Format

Share Document