scholarly journals Using the Plunging and Welding Process Windows to Determine a FSW Means of Production

2010 ◽  
Vol 89-91 ◽  
pp. 697-702
Author(s):  
Sandra Zimmer ◽  
Laurent Langlois ◽  
Julien Laye ◽  
Jean Claude Goussain ◽  
Patrick Martin ◽  
...  

This paper presents an experimental methodology to determine a Friction Stir Welding (FSW) means of production based on the experimental study of the tool / material mechanical interactions generated during the plunging and welding stages. These two stages have been identified as being characteristic for the qualification of a FSW equipment. This paper presents the experimental results of the parametric study done on the plunging and welding phases. Ranges of forces and torques diagrams were established according to the processing parameters, in order to qualify a means of production and select the process parameters allowing the operation on the available FSW equipment.

2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


2019 ◽  
Vol 969 ◽  
pp. 828-833 ◽  
Author(s):  
R. Nandhini ◽  
R. Dinesh Kumar ◽  
S. Muthukumaran ◽  
S. Kumaran

The friction stir welding of polyamide 66 with a specially modified tool is studied. A variation of the conventional friction stir welding is investigated by incorporating a friction plate for the purpose of heating the polymer in the course of welding process through the tool shoulder. This in turn, improves the efficiency of the weld. The association of the welding process parameters and the weld performance has been investigated by the grey relational analysis with multi response characteristics like weld tensile strength, percent elongation and hardness. Macrostructure of the weld joint cross section has been explored by Stereo microscope. The maximum weld tensile strength of 63 MPa and a Shore hardness of 60 D at the weld nugget are obtained. The hardness profiles of the welded samples have been analyzed in this investigation.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1480
Author(s):  
Assefa Asmare ◽  
Raheem Al-Sabur ◽  
Eyob Messele

The use of aluminum alloys, nowadays, is swiftly growing from the prerequisite of producing higher strength to weight ratio. Lightweight components are crucial interest in most manufacturing sectors, especially in transportation, aviation, maritime, automotive, and others. Traditional available joining methods have an adverse effect on joining these lightweight engineering materials, increasing needs for new environmentally friendly joining methods. Hence, friction stir welding (FSW) is introduced. Friction stir welding is a relatively new welding process that can produce high-quality weld joints with a lightweight and low joining cost with no waste. This paper endeavors to deals with optimizing process parameters for quality criteria on tensile and hardness strengths. Samples were taken from a 5 mm 6061-T6 aluminum alloy sheet with butt joint configuration. Controlled process parameters tool profile, rotational speed and transverse speed were utilized. The process parameters are optimized making use of the combination of Grey relation analysis method and L9 orthogonal array. Mechanical properties of the weld joints are examined through tensile, hardness, and liquid penetrant tests at room temperature. From this research, rotational speed and traverse speed become significant parameters at a 99% confidence interval, and the joint efficiency reached 91.3%.


Sign in / Sign up

Export Citation Format

Share Document