Through Thickness Microstructural Investigation of Temper Rolled Ferritic Steels for Thin Sheet Applications

2010 ◽  
Vol 89-91 ◽  
pp. 73-78
Author(s):  
Caroline Luis ◽  
Monique Gaspérini ◽  
Thierry Chauveau

This paper focuses on the analysis of the microstructure and of the texture through the sheet thickness after temper rolling of very thin ferritic steels. The study uses EBSD and X-Ray diffraction. Comparison is made between an interstitial-free (IF) steel and of some industrial low carbon ferritic steels used after ageing. The experimental results are discussed with respect to the anisotropy of the mechanical behaviour after temper rolling during simple shear tests.

2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2012 ◽  
Vol 1386 ◽  
Author(s):  
Alcides L. Leao ◽  
Bibin M. Cherian ◽  
Sivoney F. Souza ◽  
Mohini Sain ◽  
Suresh Narine

ABSTRACTCellulose nanofibrils have been evaluated as reinforcement material in polymeric matrixes due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes as well as its environmental positive footprint. This work describes how banana nanocellulose can be used to replace others not so friendly materials in many applications including, biomaterials, automotive industries and packaging by proved with their mechanical properties. The process used is very mild to the environment and consists of a high pressure fibrillation followed by a chemical purification which affects the fiber morphology. Many fibers characterization processes were used including microscopy techniques and X-ray diffraction to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of the fibers.


Author(s):  
Sandeep Bansal ◽  
Dheeraj Gupta ◽  
Vivek Jain

Hydropower plants are experiencing huge revenue losses due to the failure of hydro turbines caused by cavitation. Surface modification could be a feasible solution to tackle this problem. Microwave processing of metallic materials to coat/clad has gained popularity in recent years. In the current study, microwave exposure time by analyzing susceptor temperature is optimized to get sound clads. Nickel-based and Cr3C2-reinforced clad on SS-316 substrate is developed for cavitation erosion resistance. The clads have been developed in a domestic microwave oven of 2.45 GHz and 900 W. The Ni + 30% Cr3C2 developed clad has been characterized through various standard mechanical and metallurgical techniques like X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, Vicker’s micro-hardness, porosity measurement, and flexural study. The presence of various carbide and intermetallic phases Cr2Ni3, Cr7C3, CrSi, SiO2, and FeNi3 is confirmed from the X-ray diffraction pattern. The distribution of hard carbide phases into soft matrix is confirmed from the microstructural investigation. Vicker’s microhardness study confirms the enhanced average microhardness of the clad region by 2.5 times of the substrate. The analysis of porosity shows significantly less (0.98%) porosity. The flexural study of developed clads by using three-point bending test is evaluated and flexural strength and deformation index values of developed clads of 814 ± 11.5 MPa and 2.29 × 10−4 mm N−1 respectively are observed.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
E. Hamzah ◽  
C. L. Khohr ◽  
Ahmad Abdolahi ◽  
Z. Ibrahim

In this work, the iron bacteria were cultured and inoculated into the cooling water before immersion, and low carbon steel coupons were immersed for one month. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated using scanning electron microscopy (SEM), x-ray diffraction spectroscopy (XRD) and weight loss methods. SEM results showed that large amounts of corrosion products and heterogeneous biofilm layer were formed on the coupon surface. SEM also revealed the uniform-pitting corrosion on the steel surface due to bacteria colonization. XRD results show that the main constituents present in corrosion product are composed of iron oxides and iron hydroxides. 


2017 ◽  
Vol 24 (03) ◽  
pp. 1750036
Author(s):  
MINGYONG SHU ◽  
HAIYING YIN ◽  
QINGDONG ZHONG ◽  
XI SHI ◽  
HONGBO HAN

Enamel glaze was added with glass powders of different sizes and masses and fired into enamel coatings on the surface of low-carbon steel. Acid resistance of the enamel coatings in H2SO4 solution was analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and mass loss of acid corrosion. As was discovered in research, the acid corrosion quantity in the enamel coatings decreased with the decrease in the particle size of the glass powder when the particle size of the additive glass powder reduced from 100[Formula: see text][Formula: see text]m to 1–2[Formula: see text][Formula: see text]m and heated the prepared enamel coatings in the H2SO4 solution until 80[Formula: see text]C and kept for 48[Formula: see text]h. When the additive amount of the glass powder increased from 5% to 20%, the surface of the enamel coating was smooth and flat with good glossiness and without defects like obvious bubbles and cracks, and the acid corrosion quantity decreased with increase in the additive amount of glass powder, which decreased from 43.24[Formula: see text]mg/cm[Formula: see text]d to 4.28[Formula: see text]mg/cm2.d, satisfying the acid-proof performance requirements of industrial enamel coatings.


2011 ◽  
Vol 399-401 ◽  
pp. 1998-2003 ◽  
Author(s):  
Biao Zhou ◽  
Feng Jin ◽  
Qun Luo ◽  
Qian Li ◽  
Kuo Chih Chou

The high temperature oxidation and microstructure evolution of 55%Al-Zn-Si coated sheets were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). After oxidation, the coatings consisted of three phases including ZnO, Fe2Al5, and FeAl from topcoat to the substrate. The different diffusion rate of Fe and Al result in forming voids at the interface of intermetallic layer and the substrate. A good agreement has been reached between the experimental data and the calculation from Chou diffusion model, which has a good predicted function. Moreover, the characteristic oxidation time and the apparent activation energy were obtained.


2009 ◽  
Vol 24 (4) ◽  
pp. 1559-1566 ◽  
Author(s):  
Xiang Chen ◽  
Esa Vuorinen

The in situ x-ray diffraction observations of the bainitic transformation were conducted by using the high-temperature x-ray diffraction technique. The volume fraction and carbon content of austenite depend on the transformation temperature. The d{110} value of bainitic ferrite decreases with increasing austempering temperature, which is related to the decrease of carbon concentration in bainitic ferrite. Asymmetry diffraction peaks are obtained for samples at the early stage of transformation at any austempering temperatures. This asymmetry diffraction peak after the formation of bainitic ferrite could be attributed to a heterogeneous distribution of carbon in different regions of austenite and show that two types of austenite with different carbon contents, low-carbon austenite (γLC) and the high-carbon austenite (γHC), exist during the transformation. The microstructure after cooling down to room temperature is presented to show the effectiveness of the x-ray diffraction analysis.


1999 ◽  
Vol 06 (06) ◽  
pp. 1299-1306 ◽  
Author(s):  
A. COSULTCHI ◽  
E. GARCÍAFIGUEROA ◽  
A. MUÑOZ-FLORES ◽  
A. GARCÍA-BÓRQUEZ ◽  
B. ZEIFERT ◽  
...  

Reduction of petroleum wells production is often observed and related to the presence of solid deposits adhered on the internal wall of the tubing. A piece of tubing with organic material adhered on its surface was recovered from a Mexican southeastern region well. Its composition and morphology was studied applying scanning electron microscopy with X-ray energy dispersion spectroscopy (SEM-EDXS), X-ray diffraction (XRD) and reflection Fourier Transform Infrared Spectroscopy (FT-IRS). High-condensed hydrocarbons with hydroxyl and carboxyl functional groups and 6.4 wt% total sulfur were found. The adhered-material morphology suggests vitreous solid structure usually identified in polycyclic aromatic compounds. Iron (II, III) oxides and nonstoichiometric sulfides are present; the last, as a corrosion product obtained in petroleum with low H 2 S concentration. Pyrrhotite ( Fe 1-x S ), which exhibits a nonstoichiometric structure, was reported as the active phase of iron oxide catalysts in hydrogen interchange processes.


2015 ◽  
Vol 628 ◽  
pp. 110-115 ◽  
Author(s):  
Helder Carvalho Ferreira ◽  
Francisco Jose Martins Boratto ◽  
Vicente Tadeu Lopes Buono

Sign in / Sign up

Export Citation Format

Share Document