Fluidity and Mechanical Behavior of Cement Solidified Lead-Zinc Mine Tailings

2014 ◽  
Vol 898 ◽  
pp. 383-386 ◽  
Author(s):  
Chun Lei Zhang ◽  
Shun Cai Wang ◽  
Fan Lu Min

Cemented paste backfill method has been widely used in many modern mines throughout the world due to the increasingly stringent environmental regulations and short of disposal land. This study presents experimental results on the use of Portland cement in the solidification of Pb-Zn tailings in China. Test results show UCS strength increase lineally with cement content, tailings concentration, and curing time, respectively. There exist a minimum cement content and tailings concentration to produce obvious strength. The fluidity decrease quickly with cement proportion and tailings concentration, under the satisfying of a minimum pumping fluidity, the increase of tailings concentration can effectively reduce the cement consumption so as to decrease the treatment cost.

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhuen Ruan ◽  
Yong Wang ◽  
Aixiang Wu ◽  
Shenghua Yin ◽  
Fei Jin

Deep cone thickener (DCT) is key equipment in cemented paste backfill (CPB) technology. However, rake blockage occurs frequently in DCT during the dewatering process of the unclassified tailings being thickened from dilute slurry to thickened tailings or paste. Rake blockage has disastrous effects on the CPB operation. In order to investigate the influencing factors of rake blockage in DCT, a mathematical model of rake power in DCT was developed. In addition, stacking mud bed (made of thickened tailings) from the DCT in Huize lead-zinc mine (HLZM) in different rake blockage accidents was sampled and tested to investigate the effect of tailings characters on rake blockage. Results indicated that the concentration of the mud bed and the friction between the mud bed and the cone wall contributed to the rake blockage. The concentration and friction were influenced by the high content of coarse particles in the mud bed. Moreover, activating devices for bed mud, as the corrective and preventive action, were developed to prevent the rake blockage, which was valid in HLZM.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chongchun Xiao ◽  
Xinmin Wang ◽  
Qiusong Chen ◽  
Feng Bin ◽  
Yihan Wang ◽  
...  

The cemented paste backfill (CPB) technology has been successfully used for the recycling of mine tailings all around the world. However, its application in coal mines is limited due to the lack of mine tailings that can work as aggregates. In this work, the feasibility of using silts from the Yellow River silts (YRS) as aggregates in CPB was investigated. Cementitious materials were selected to be the ordinary Portland cement (OPC), OPC + coal gangue (CG), and OPC + coal fly ash (CFA). A large number of lab experiments were conducted to investigate the unconfined compressive strength (UCS) of CPB samples. After the discussion of the experimental results, a dataset was prepared after data collection and processing. Deep neural network (DNN) was employed to predict the UCS of CPB from its influencing variables, namely, the proportion of OPC, CG, CFA, and YS, the solids content, and the curing time. The results show the following: (i) The solid content, cement content (cement/sand ratio), and curing time present positive correlation with UCS. The CG can be used as a kind of OPC substitute, while adding CFA increases the UCS of CPB significantly. (ii) The optimum training set size was 80% and the number of runs was 36 to obtain the converged results. (iii) GA was efficient at the DNN architecture tuning with the optimum DNN architecture being found at the 17th iteration. (iv) The optimum DNN had an excellent performance on the UCS prediction of silt-based CPB (correlation coefficient was 0.97 on the training set and 0.99 on the testing set). (v) The curing time, the CFA proportion, and the solids content were the most significant input variables for the silt-based CPB and all of them were positively correlated with the UCS.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Wang ◽  
Aixiang Wu ◽  
Lianfu Zhang ◽  
Fei Jin ◽  
Xiaohui Liu

Cemented paste backfill (CPB) technology has been applied quite popular around the world. Yield stress is a key factor determining whether CPB could be transported. In order to reveal the effect of solid components on yield stress of CPB, a uniform design experimental program (four factors and six levels) was conducted to test the rheological property of a mine’s CPB. The tested four factors including mass fraction, cement versus other solids ratio, coarse tailings, and gravel contents were considered during the experiment design. Likewise, six experimental levels were given to each factor. Results of the test show that yield stress increased with the mass fraction and cement content. However, the trend reversed for the content of coarse tailings and gravel. Contribution of the four factors to yield stress in descending order is mass fraction > content of gravel > content of coarse tailings > cement versus other tailings ration. Effect of solid components on the yield stress of CPB is mainly due to the different flocculation structure inside the CPB. These various flow structures result in the different free-water content of CPB, leading to a different yield stress value.


Sign in / Sign up

Export Citation Format

Share Document