Effects of NiO/TiO2 Mixed Nanoparticles on Quasi-Solid Dye-Sensitized Solar Cells

2014 ◽  
Vol 898 ◽  
pp. 51-55
Author(s):  
Ying Yang ◽  
Jia Rui Cui ◽  
Peng Fei Yi ◽  
Xue Yi Guo

In this work, a magnetic polymer electrolyte composed by agarose as polymer matrix, NMP as solvent and NiO/TiO2mixed nanoparticles as modifier was investigated and employed in the solid-sate dye-sensitized solar cells (DSSCs). The influence of NiO/TiO2mixed nanoparticles on the morphology and ionic conductivity of the polymer electrolyte was studied by SEM and electrochemical impedance spectra. From SEM analysis, the mixing of NiO with TiO2nanoparticle in polymer electrolyte leads to smooth surface of the polymer electrolyte films. The polymer electrolyte modified by mixed nanoparticles with NiO: TiO2ratio of 1:4 shows the maximum ionic conductivity of 6.64×10-3S·cm-1. From photovoltaic performance study, the increase of NiO: TiO2ratio in polymer electrolyte leads to an improvement in light-to-electric conversion efficiency. The optimal photoelectric efficiency is achieved at NiO: TiO2ratio of 1: 4. Besides, after treatment under an external magnetic field, the DSSC modified with NiO: TiO2ratio of 1: 4 exhibits a better photovoltaic performance than that of DSSC without magnetic field treatment.

2010 ◽  
Vol 1270 ◽  
Author(s):  
Braden Bills ◽  
Mariyappan Shanmugam ◽  
Mahdi Farrokh Baroughi ◽  
David Galipeau

AbstractThe performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the porous titanium oxide (TiO2) nanoparticles back into the electrolyte solution, which occurs almost exclusively through the interface. This and the fact that DSSCs have a very large interfacial area makes their performance greatly dependant on the density and activity of TiO2 surface states. Thus, effectively engineering the TiO2/dye/electrolyte interface to reduce carrier losses is critically important for improving the photovoltaic performance of the solar cell. Atomic layer deposition (ALD), which uses high purity gas precursors that can rapidly diffuse through the porous network, was used to grow a conformal and controllable aluminum oxide (Al2O3) and hafnium oxide (HfO2) ultra thin layer on the TiO2 surface. The effects of this interfacial treatment on the DSSC performance was studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1645 ◽  
Author(s):  
Seong Il Cho ◽  
Hye Kyeong Sung ◽  
Sang-Ju Lee ◽  
Wook Hyun Kim ◽  
Dae-Hwan Kim ◽  
...  

At an elevated temperature of 90 °C, a chemical bath deposition using an aqueous solution of Zn(NO3)2·6H2O and (CH2)6N4 resulted in the formation of both nanoflowers and microrods of ZnO on F-doped SnO2 glass with a seed layer. The nanoflowers and microrods were sensitized with dyes for application to the photoelectrodes of dye-sensitized solar cells (DSSCs). By extending the growth time of ZnO, the formation of nanoflowers was reduced and the formation of microrods favored. As the growth time was increased from 4 to 6 and then to 8 h, the open circuit voltage (Voc) values of the DSSCs were increased, whilst the short circuit current (Jsc) values varied only slightly. Changes in the dye-loading amount, dark current, and electrochemical impedance were monitored and they revealed that the increase in Voc was found to be due to a retardation of the charge recombination between photoinjected electrons and I3− ions and resulted from a reduction in the surface area of ZnO microrods. A reduced surface area decreased the dye contents adsorbed on the ZnO microrods, and thereby decreased the light harvesting efficiency (LHE). An increase in the electron collection efficiency attributed to the suppressed charge recombination counteracted the decreased LHE, resulting in comparable Jsc values regardless of the growth time.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4115 ◽  
Author(s):  
Aimi Mahirah Zulkifli ◽  
Nur Izzah Aqilah Mat Said ◽  
Shujahadeen Bakr Aziz ◽  
Elham Mohammed Ali Dannoun ◽  
Shameer Hisham ◽  
...  

In the present work, phthaloyl chitosan (PhCh)-based gel polymer electrolytes (GPEs) were prepared using dimethylformamide (DMF) as a solvent, ethyl carbonate (EC) as a co-solvent, and a set of five quaternaries of potassium iodide (KI) as a doping salt, which is a mixed composition of iodine (I2). The prepared GPEs were applied to dye-sensitized solar cells (DSSC) to observe the effectiveness of the electrolyte, using mesoporous TiO2, which was sensitized with N3 dye as the sensitizer. The incorporation of the potassium iodide-based redox couple in a polymer electrolyte is fabricated for dye-sensitized solar cells (DSSCs). The number of compositions was based on the chemical equation, which is 1:1 for KI:I2. The electrical performance of prepared GPE systems have been assessed using electrical impedance spectroscopy (EIS), and dielectric permittivity. The improvement in the ionic conductivity of PhCh-based GPE was observed with the rise of salt concentration, and the maximum ionic conductivity (4.94 × 10−2 S cm−1) was achieved for the 0.0012 mol of KI:I2. The study of dielectric permittivity displays that ions with a high dielectric constant are associated with a high concentration of added ions. Furthermore, the gel polymer electrolyte samples were applied to DSSCs to detect the conversion effectiveness of the electrolytes. For electrolytes containing various content of KI:I2 the highest conversion efficiency (η%) of DSSC obtained was 3.57% with a short circuit current density (Jsc) of 20.33 mA cm−2, open-circuit voltage (Voc) of 0.37 V, fill factor (FF) of 0.47, as well as a conductivity of 2.08 × 10−2 S cm−1.


2021 ◽  
Author(s):  
S. Revathi ◽  
A Pricilla Jeyakumari

Abstract Currently, the TiO2/CdS photoanodes based dye sensitized solar cells (DSSCs) have shown extraordinary developments in the photo conversion efficiency. In this report, pristine TiO2, CdS and various molar ratios of TiO2/CdS photoanodes were prepared by one step microwave irradiation route and followed by doctor blade method. The sheet like morphology of the TiO2 and CdS nanoparticles were clearly evident from the SEM and TEM images. A significant reduction band gap with enhanced light absorption and rapid prevention of electron hole pair was explored by UV-DRS and PL studies. The photocurrent density-voltage (J-V) and electrochemical impedance (EIS) characteristics were analyzed for assembled solar cell. The photo-conversion efficiency of 12.8% was obtained with the configuration TiO2/CdS (200 mg) that represent a 2.5 fold increment compared to bare TiO2 (5.33%) as well as commercial Pt (6.11%). The experimental results are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yiming Chen ◽  
Haiyan Zhang ◽  
Yuting Chen ◽  
Jiapeng Lin

Carbon nanocomposite electrodes were prepared by adding carbon nanotubes (CNTs) into carbon black as counterelectrodes of dye-sensitized solar cells(DSSCs). The morphology and structure of carbon nanocomposite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nanocomposite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nanocomposite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.


2010 ◽  
Vol 93-94 ◽  
pp. 31-34 ◽  
Author(s):  
A. Chindaduang ◽  
Pattasuda Duangkaew ◽  
Sirapat Pratontep ◽  
Gamolwan Tumcharern

We focus on the energy conversion improvement of dye-sensitized solar cells by using poly(ethylene oxide)-multi-walled carbon nanotube (PEO-MWCNT) electrolyte. Compared with the MWCNT-free solar cells, the addition of 0.05 wt.% MWCNTs in the polymer electrolyte results in a dramatic increase of the short-circuit current (Jsc), consequently raising the device performance by approximately 9% under a direct light of the Air Mass 1.5 irradiation at 100 mW cm-2. The role of the conductive carbon materials in the polymer electrolyte have been investigated by means of ionic conductometry, electrochemical impedance spectroscopy and UV-visible spectroscopy. This work demonstrates that MWCNT additives in polymer electrolytes is a convenient yet effective strategy for improving the performance of photovoltaic devices.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1304
Author(s):  
Yung-Sheng Yen ◽  
Velu Indumathi

A series of novel double-anchoring dyes for phenoxazine-based organic dyes with two 2-cyanoacetic acid acceptors/anchors, and the inclusion of a 2-ethylhexyl chain at the nitrogen atom of the phenoxazine that is connected with furan, thiophene, and 3-hexylthiophene as a linker, are used as sensitizers for dye-sensitized solar cells. The double-anchoring dye exhibits strong electronic coupling with TiO2, provided that there is an efficient charge injection rate. The result showed that the power conversion efficiency of DP-2 with thiophene linker-based cell reached 3.80% higher than that of DP-1 with furan linker (η = 1.53%) under standard illumination. The photovoltaic properties are further tuned by co-adsorption strategy, which improved power conversion efficiencies slightly. Further molecular theoretical computation and electrochemical impedance spectroscopy analysis of the dyes provide further insight into the molecular geometry and the impact of the different π-conjugated spacers on the photophysical and photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document