The Effect of EDM Die-Sinking Parameters on Non-Conductive Materials

2014 ◽  
Vol 903 ◽  
pp. 56-60 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Assyura ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of electrical discharge machining (EDM) die-sinking on acrylic as non-conductive material was studied. The objective of the study is to establish a new setup to machine a non-conductive material by using EDM die-sinking. Acrylic plastic material was selected as to represent the other groups of non-conductive materials. The experiment was conducted using a discharge sinking machine with copper as the tool electrode. Metal insert as conductive material was plug-in into acrylic workpiece. Polarity of the setup was set to positive at the copper electrode and negative at the plug-in metal insert. The variable input parameters such as electric discharge current, voltage, pulse on time and pulse off time had been observed to review machinibility of die-sinking EDM by taking the overcut and taper of sidewall of holes produced. It was found that the highest current supply during machining, the deepest hole occurred on the acrylic workpiece. Thus, the new method purposed on this study proved that non-conductive material can be machined using the EDM die-sinking.

2011 ◽  
Vol 264-265 ◽  
pp. 1180-1186 ◽  
Author(s):  
Suleiman Abdulkareem ◽  
Ahsan Ali Khan ◽  
Mohamed Konneh

Electrical discharge machining (EDM) process is a manufacturing method for shaping hard metals and formation of deep and complex shaped hole by spark erosion in electrical conductive materials such as metals, metallic alloys, ceramics etc. EDM process is achieved by a series of recurring electrical discharges between the electrode and workpiece in the presence of dielectric fluid. EDM unique feature of using thermal energy to machine conductive materials irrespective of material hardness has been its major advantage in the manufacture of aerospace, surgical, mould, die, automotive and as well as sport components. The effectiveness of EDM process depends among other factors on the thermal properties of the electrode material. The objective of this study is to study the influence of electrode cooling on recast layers and micro crack in EDM of titanium. The machining parameters investigated in the present study are current intensity (I), pulse on-time (Ton), pulse off-time (Toff) and gap voltage (V), which are of great interest for EDM researchers. The copper electrode is used to EDM titanium workpiece at room temperature and at sub-zero temperature using liquid nitrogen. The influence of cooling of copper electrode on recast layers and micro crack on titanium were investigated using scanning electron microscope (SEM) and has been reported in this study.


2012 ◽  
Vol 488-489 ◽  
pp. 876-880 ◽  
Author(s):  
Manoj Kumar Kuttuboina ◽  
A. Uthirapathi ◽  
Singaravelu D. Lenin

The effect of process parameters namely peak current, pulse on time and flushing pressure on electrical discharge machining (EDM) of titanium alloy (Ti–6Al–4V) were investigated by using three different tool electrode materials namely copper, brass, and aluminium. Kerosene is used as dielectric. The process parameters for machining Ti6Al4V are varied at three levels by using Taguchi's orthogonal array table. The responses such as Metal Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (SR) are measured and the most significant parameter was confirmed by ANOVA (Analysis Of Variance). The test result shows that copper electrode material possesses higher MRR, less TWR as compared to brass and aluminium. Brass and copper tools has good surface finish as compared with aluminium. The finest electrode material for machining of Ti6Al4V alpha beta alloy in EDM process was in the order of copper, brass and aluminium.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2020 ◽  
Vol 38 (4A) ◽  
pp. 545-551
Author(s):  
Shukry Aghdeab ◽  
Ahmed G. Abdulameer ◽  
Ahmed B. Abdulwahhab ◽  
Majid H. Ismiel

Electrical Discharge Machining (EDM) applies the concept of material eradication by utilizing electric spark erosion. The target of this exploration concentrates to examine the ideal procedure parameters of EDM on Aluminum 6061-T6as a workpiece with copper as a tool electrode. The effect of various process operators 'on machining rendering was examined. Internal factors with current (10, 20, 30) Ampere,  pulse on time (50, 100, 150) µs was used after which takes pulse off time (25, 50, 75) µs. All parameters applied for empirical acts with influence on Ra (surface roughness ).  The result showed that MRR" Material Removal Rate” is increment by expanding in current and pulse on time and it declines by expanding in pulse off time. Optimal condition are gained when using " Using current 30 Ampere, pulse on time is 150 µs and minimize assessment of pulse off time is 25 µs.


2020 ◽  
Vol 26 (4) ◽  
pp. 154-161
Author(s):  
Sharma Kumar Rajiv

AbstractNowadays there is a huge demand of High Strength Temperature Resistance (HSTR) alloys such as titanium, carbide, nimonics and ceramics in aerospace, defence and electronics. Among these alloys machining of tungsten carbide alloy is of interest, because of its numerous applications. Complex shapes of tungsten carbide are not generally made by traditional manufacturing process. To machine tungsten carbide with high accuracy, non-traditional machining process like Laser beam machining, Electron beam machining and Electrical discharge machining are a proper choice. In the present paper, the authors have machined Tungsten carbide (93% WC and 7%Co) with copper electrode. The machining is performed on EDM MODEL 500 X 300 ENC with VELVEX EDMVEL-2 as dielectric oil. The 17 experiments are carried out based on RSM (Box-Behnken) method. Further, in order to find the optimum combination grey relational approach is used. The results showed that pulse-on-time of 40μs, pulse-off-time of 2μs and current of 8A are optimum combination for machining of Tungsten carbide (93% WC and 7%Co). Lastly, the confirmation experiment has been conducted.


2013 ◽  
Vol 465-466 ◽  
pp. 1214-1218 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Halida Ilyani Kamarudin Nor ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of electrical discharge machining (EDM) die-sinking on aluminium LM6 (Al-Sil2) as a new material is investigated.The objective of this paper is to determine the relationship between the machining parameters which are pulse-on time, pulse-off time and peak current on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Tungsten copper tool of diameter 10mm was chosen as an electrode. Design of experiment using Taguchi method was used to develop experimental matrix and optimize the MRR, EWR and Ra. The analysis was done using the Minitab software. It is found that the current and pulse on time are significantly affected the MRR, EWR and Ra while pulse off time and voltage are less significant factor that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2020 ◽  
Vol 977 ◽  
pp. 12-17
Author(s):  
Thi Hong Tran ◽  
Tien Dung Hoang ◽  
Hong Ky Le ◽  
Thi Tam Do ◽  
Thanh Hien Bui ◽  
...  

This paper presents a study on analysis of influences of the surface roughness in Electrical Discharge Machining 90CrSi tablet shape punches with the use of copper electrode. In this paper, 9 experimental runs were designed and conducted by using Taguchi method. In addition, 4 process parameters including the gap voltage, the pulse current, the pulse on time and the pulse off time were investigated. The influences of these input parameters on the surface roughness were evaluated by analysing variance. Also, from the experimental results, optimum values of the input parameters for getting the minimum surface roughness were proposed.


2017 ◽  
Vol 266 ◽  
pp. 38-42 ◽  
Author(s):  
Ashish Goyal ◽  
Anand Pandey ◽  
Pooja Sharma

Machinability of aerospace material, Inconel 625 through Wire cut electrical discharge machining has been performed and compared using Taguchi’s Orthogonal L18 (21*35). Normal diffused and cryogenic treated diffused wires are being used as a tool electrode to investigate the effects of machining parameters viz. tool electrode, peak current, pulse on time, pulse off time, wire feed and wire tension on the response MRR. The present study resulted that cryogenic treated tool electrode give better performance in comparison to normal wire electrode assisting in improving stock removal and less electrode wear. Pulse on time and peak current are observed as the most influenced parameter. Scanning Electron Microscopy (SEM) studies has been conducted and presented.


AISI 1020 Steel is hard while machining because of its nature of harness and brittleness. Electrical Discharge Machining (EDM) is a significant technique to machine such materials. Current research examines the pulse current effect (A), discharge voltage (B), pulse on time (C), pulse off time (D),Oil pressure (E)and spark gap(F) on Metal Removal Rate (MRR) and Surface Roughness on EDM of AISI 1020 Steel. Experiments have been carried out in a methodical type taking up nearly 54 successive trails utilizing an EDM machine and a copper electrode of 10mm diameter. Three factors, three levels, Box Bekhen through response surface methodology design was utilized to analyze the outcomes. Gray relational analysis techniques are adopted for finding parameter influencing range for MRR and SR. A multi regression mathematical model was brought up in launching the association between parameters of machining and artificial neural network techniques are used for predicting the optimized parameters.


2021 ◽  
Vol 68 (2) ◽  
pp. 279-288
Author(s):  
Mozhgan Karimi ◽  
Sayyed Ahmad Nabavi-Amri ◽  
Ahmad Soleymanpour

In this work, the effect of the presence and the diffusion of the Copper from the tool electrode onto the EDMed stainless steel (SS) surface have been investigated by electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD), Quantometer analysis, and Optical microscopic observations. The Taguchi method was used to study the effects of Pulseon time (ton), Pulse-off time (toff), discharge current (I), and overall machining time (τ) on chemical composition, microstructures, micro-cracks, and electrochemical corrosion of EDMed stainless steel workpieces. The results show that the variation of machining parameters changes the chemical composition of the workpieces. By increasing the discharge current and decreasing the Pulse-on time, the copper and the carbon diffuse onto the surface of the workpiece. Consequently, the chemical composition of the workpiece surface changes, leading to an increment of the corrosion resistance. The XRD analysis shows the formation of Fe2C, Cr3C2, and CuNi. In addition, at higher values of discharge current and ton/toff ratio, the micro-cracks propagate on the surface of the workpiece.


Sign in / Sign up

Export Citation Format

Share Document