scholarly journals Prediction of EDM Process Parameters for AISI 1020 Steel using RSM, GRA and ANN

AISI 1020 Steel is hard while machining because of its nature of harness and brittleness. Electrical Discharge Machining (EDM) is a significant technique to machine such materials. Current research examines the pulse current effect (A), discharge voltage (B), pulse on time (C), pulse off time (D),Oil pressure (E)and spark gap(F) on Metal Removal Rate (MRR) and Surface Roughness on EDM of AISI 1020 Steel. Experiments have been carried out in a methodical type taking up nearly 54 successive trails utilizing an EDM machine and a copper electrode of 10mm diameter. Three factors, three levels, Box Bekhen through response surface methodology design was utilized to analyze the outcomes. Gray relational analysis techniques are adopted for finding parameter influencing range for MRR and SR. A multi regression mathematical model was brought up in launching the association between parameters of machining and artificial neural network techniques are used for predicting the optimized parameters.

Author(s):  
Satish Giduturi ◽  
Ashok Kumar

Wire Electrical Discharge Machining (WEDM) is a widely accepted non-traditional material removal process used to manufacture components with intricate shapes and profiles. It is considered as a unique adaptation of the conventional EDM process, which uses an electrode to initialize the sparking process. H13 Hot Work Tool Steel has high hot tensile strength, hot wear-resistance and toughness. Good thermal conductivity and insensitiveness to hot cracking, making it suitable not only for hot die applications but also plastic moulds. In this study, it is found that most predominant factors for the maximum material removal rate which is 22.21 mm3/min are current which was found to be 200A and Pulse ON Time 125 µs, however rest four factors (voltage 20V, pulse off time 40µs, wire tension 8N and wire feed 7mm/min) has less impact as compare to the predominant factors. The most predominant factors for Minimum surface roughness which is 0.89µm are wire tension 10N, pulse on time 115µs and servo voltage 60V. However, rest three factors pulse off time 60 µs, peak current 140 A and wire feed 7mm/min has less impact as compare to the predominant factors.


Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1504-1510
Author(s):  
Safaa K. Ghazi

The experimental work of this paper leads to electrical discharge machining (EDM). A system for machining in this process has been developed. Many parameters are studied such as current, pulse on-time, pulse off time of the machine. The main aim of this work is to calculate the metal removal rate (MRR) and electrode wear rate (EWR) using copper, electrodes when machining tool steel H13 specimens of a thickness (4mm). Different current rates are used ranging from (30, 42, and 54) Amp, pulse on-time ranging from (75, 100, and 125) and pulse off time ranging from (25, 50, and 75)   found that high current gives large electrode wear and metal removal rate and. The experiment design was by Taguchi Method. From an analysis of variance (ANOVA) the more active influence of input factors on the outputs is currently for metal removal rate (MRR) (58%) and electrode wear rate (EWR) (57).


2013 ◽  
Vol 465-466 ◽  
pp. 1214-1218 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Halida Ilyani Kamarudin Nor ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of electrical discharge machining (EDM) die-sinking on aluminium LM6 (Al-Sil2) as a new material is investigated.The objective of this paper is to determine the relationship between the machining parameters which are pulse-on time, pulse-off time and peak current on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Tungsten copper tool of diameter 10mm was chosen as an electrode. Design of experiment using Taguchi method was used to develop experimental matrix and optimize the MRR, EWR and Ra. The analysis was done using the Minitab software. It is found that the current and pulse on time are significantly affected the MRR, EWR and Ra while pulse off time and voltage are less significant factor that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2022 ◽  
pp. 824-842
Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2010 ◽  
Vol 426-427 ◽  
pp. 85-88
Author(s):  
Hong Jun Wang ◽  
Dun Wen Zuo ◽  
X.M. Wu ◽  
M. Wang

The crater diameter and depth of the surface machined by electrical discharge machining (EDM) were used to evaluate indexes for EDMed surface. The influence of discharge parameters selected on the crater diameter and depth in mirror-like surface EDM process was investigated, and the optimization scheme was obtained. An L16 (44×23) Taguchi standard orthogonal array was chosen for the design of experiments. Experimental results indicate that peak current and open discharge voltage have more influence on the crater diameter and depth in comparison with pulse off-time and pulse duration. Also the results confirm that the crater depth is about 10 to 20 percent of its diameter while the near-mirror EDM conducted in the NAK80 steel with fine discharge parameters.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2012 ◽  
Vol 488-489 ◽  
pp. 876-880 ◽  
Author(s):  
Manoj Kumar Kuttuboina ◽  
A. Uthirapathi ◽  
Singaravelu D. Lenin

The effect of process parameters namely peak current, pulse on time and flushing pressure on electrical discharge machining (EDM) of titanium alloy (Ti–6Al–4V) were investigated by using three different tool electrode materials namely copper, brass, and aluminium. Kerosene is used as dielectric. The process parameters for machining Ti6Al4V are varied at three levels by using Taguchi's orthogonal array table. The responses such as Metal Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (SR) are measured and the most significant parameter was confirmed by ANOVA (Analysis Of Variance). The test result shows that copper electrode material possesses higher MRR, less TWR as compared to brass and aluminium. Brass and copper tools has good surface finish as compared with aluminium. The finest electrode material for machining of Ti6Al4V alpha beta alloy in EDM process was in the order of copper, brass and aluminium.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Ashish Goyal ◽  
Vyom Singh ◽  
Abhishek Patel

Gear fabrication in wire electrical discharge machining (WEDM) plays an important role in manufacturing industries. This paper describes the analysis and optimization of process parameters for the fabrication of spur gear on brass spur gear on brass workpiece (10cmx15cmx6mm) material by wire EDM process. The experiments were performed by using the design of experiment (DoE) approach and the material removal rate (MRR) was analyzed by response surface methodology technique. The effect of input parameters i.e. pulse on time, pulse off time and feed rate on MRR has been investigated. The surface geometry of the gears has been analysed by the Scanning Electron Microscopy (SEM). This study found that 0.4 μs for pulse on time, 60 μs for pulse-off time and 6 mm/min for feed rate provides improved material removal rate. The analysis of variance shows that pulse on time and feed rate are the significant parameters for the wire EDM process. The SEM image exhibits the capability of WEDM to machined miniature gear with a uniform distribution of regular-shaped craters and defect-free flank surface.


Sign in / Sign up

Export Citation Format

Share Document