Nitrogen Removal with Nitrification and Denitrification via Nitrite

2014 ◽  
Vol 908 ◽  
pp. 175-178
Author(s):  
Jing Xiao ◽  
Jin Hua Tang

Biological nitrification and denitrification via nitrite pathway is technically feasible and economically favorable, especially when wastewater with high ammonium concentrations or low C/N ratios is treated. Therefore, it has attracted more and more attention. It is very important to maintain partial nitrification of ammonium to nitrite. In this paper, the factors that influence operation and efficiency of nitrification and denitrification via nitrite are discussed, including DO concentration, carbon source, aeration pattern, PH, temperature and high free ammonia. High ammonia concentration and temperature are prone to accomplish of short-cut nitrification and denitrification, but limit application in practice. Finally, the review discussed the future challenges for application of short-cut nitrification and denitrification.

2004 ◽  
Vol 50 (6) ◽  
pp. 31-36 ◽  
Author(s):  
Y.Z. Peng ◽  
Y.Z. Li ◽  
C.Y. Peng ◽  
S.Y. Wang

In this study, laboratory-scale experiments were conducted applying a Sequencing Batch Reactor (SBR) activated sludge process to a wastewater stream from a pharmaceutical factory. Nitrogen removal can be achieved via partial nitrification and denitrification and the efficiency was above 99% at 23°C ± 1. The experimental results indicated that the nitrite oxidizers were more sensitive than ammonia oxidizers to the free ammonia in the wastewater. The average accumulation rate of nitrite was much higher than that of nitrate. During nitrogen removal via the nitrite pathway, the end of nitrification and denitrification can be exactly decided by monitoring the variation of pH. Consequently, on-line control for nitrogen removal from the pharmaceutical manufacturing wastewater can be achieved and the cost of operation can be reduced.


2010 ◽  
Vol 62 (11) ◽  
pp. 2599-2606 ◽  
Author(s):  
Hong Xiao ◽  
Ping Yang ◽  
Hong Peng ◽  
Yanzong Zhang ◽  
Shihuai Deng ◽  
...  

A study was conducted regarding the biological nitrogen removal from the livestock and poultry breeding wastewater (LPBWs) using a novel sequencing batch biofilm reactor (SBBR). Nitrogen removal process was studied under three aeration strategies/modes, referred to as MODE 1, 2, and 3. The results showed that MODE 2 (one operation period: instant fill of LPBWs, 3.0 h aeration, 1.5 h non-aeration, 1.5 h aeration, 1.0 h non-aeration and rapid drain of treated LPBWs) performed the best in nitrogen removal. Under MODE 2, the removal efficiencies were as high as 96.1 and 92.1% for NH3-N and TN, respectively. Simultaneous nitrification and denitrification (SND), as well as shortcut nitrification and denitrification are likely to be the two main mechanisms for the nitrogen removal in this study. Nitrifying bateria were not inhibited by heterotrophic bacteria with C/N ratios ranging from 18.1 to 21.4 and DO concentration of 2.0 mg/l. Alternation between aeration and non-aeration played an important role in NO2−-N accumulation.


2004 ◽  
Vol 50 (6) ◽  
pp. 313-320 ◽  
Author(s):  
T. Khin ◽  
A.P. Annachhatre

Nitrogen removal involving nitrification and denitrification was investigated in a fluidized bed bioreactor by using mixed culture sludge under oxygen-limited conditions. Methane was used as a sole carbon source for denitrification. In this study, optimal nitrification and denitrification rates were examined by varying methane and oxygen gas dissolution flow rates, 90 ml/min, 400 ml/min and 650 ml/min, in each. Simultaneously nitrification and denitrification was achieved. The total nitrogen removal rate was 15-mg N/g VSS. d, 21-mg N/g VSS. d and 26.4-mg N/g VSS. d at gas dissolution flow rate 90 ml/min, 400 ml/min and 650 ml/min, respectively. No significant accumulation of nitrite was found in this experiment. Nitrogen removal rates depend on gas dissolution flow rates. DO concentration was at 0.5Ð2 mg/L.


1985 ◽  
Vol 20 (3) ◽  
pp. 57-75
Author(s):  
S.E. Jasper ◽  
J.W. Atwater ◽  
D.S. Mavinic

Abstract A laboratory-scale treatment process was set up to treat Port Mann Landfill leachate, a high ammonia, low degradable carbon leachate with occasional high metals. A single sludge, nitrification/denitrification system was run for 25 weeks, with methanol added as a carbon source to improve denitrification. The objective of the treatment process was to remove biodegradable carbon and ammonia (feed levels of 25 to 250 mg/L). Carbon removal, including methanol, was adequate at SRT's of 10 days or greater. An SRT of 5 days produced inadequate treatment. Of the metals of concern, all except nickel were concentrated in the biomass. Ammonia removal was inconsistent. Good nitrification occurred at the start of the study but no denitrification occurred until operating conditions were optimized. Both processes deteriorated as the study progressed. The study clearly demonstrated that changing influent characteristics constrained the overall treatment of the leachate.


Author(s):  
Mehdi Hajsardar ◽  
Seyed Mehdi Borghei ◽  
Amir Hessam Hassani ◽  
Afshin Takdastan

Abstract A series of reactors including a sequencing batch reactor (SBR) and a sequencing batch biofilm reactor (SBBR) were used for nitrogen removal. The aim of this study was simultaneous removal of NH4+-N and NOx–-N from synthetic wastewater. In the novel proposed method, the effluent from SBR was sequentially introduced into SBBR, which contained 0.030 m3 biofilm carriers, so the system operated under a paired sequence of aerobic-anoxic conditions. The effects of different carbon sources and aeration conditions were investigated. A low dissolved oxygen (DO) level in the biofilm depth of the fixed-bed process (SBBR) simulated the anoxic phase conditions. Accordingly, a portion of NH4+-N that was not converted to NO3–-N by the SBR process was converted to NO3–-N in the outer layer of the biofilm in the SBBR process. Further, simultaneous nitrification and denitrification (SND) was achieved in the SBBR where NO2–-N was converted to N2 directly, before NO3–-N conversion (partial nitrification). The level of mixed liquid suspended solids (MLSS) was 2740 mg/l at the start of the experiments. The required carbon source (C: N ratio of 4) was provided by adding an internal carbon source (through step feeding) or ethanol. Firstly, as part of the system (SBR and SBBR), SBR operated at a DO level of 1 mg/l while SBBR operated at a DO concentration of 0.3 mg/l during Run-1. During Run-2, the system operated at the low DO concentration of 0.3 mg/l. When the source of carbon was ethanol, the nitrogen removal rate (RN) was higher than the operation with an internal carbon source. When the reactors were operated at the same DO concentration of 0.3 mg/l, 99.1 % of the ammonium was removed. The NO3–-N produced during the aerobic SBR operation of the novel method was removed in SBBR reactor by 8.3 %. The concentrations of NO3--N and NO2–-N in the SBBR effluent were reduced to 2.5 and 5.5 mg/l, respectively. Also, the total nitrogen (TN) removal efficiency was 97.5 % by adding ethanol at the DO level of 0.3 mg/l. When C:N adjustment was carried out SND efficiency at C:N ratio of 6.5 reached to 99 %. The increasing nitrogen loading rate (NLR) to 0.554 kg N/m3 d decreased SND efficiency to 80.7 %.


2017 ◽  
Vol 75 (7) ◽  
pp. 1712-1721 ◽  
Author(s):  
Zhaoming Zheng ◽  
Yun Li ◽  
Jun Li ◽  
Yanzhuo Zhang ◽  
Wei Bian ◽  
...  

The aim of the present work was to evaluate the effects of carbon sources and chemical oxygen demand (COD)/NO2−-N ratios on the anammox–denitrification coupling process of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm. Also, the anammox activities of the SNAD biofilm were investigated under different temperature. Kaldnes rings taken from the SNAD biofilm reactor were operated in batch tests to determine the nitrogen removal rates. As a result, with the carbon source of sodium acetate, the appropriate COD/NO2−-N ratios for the anammox–denitrification coupling process were 1 and 2. With the COD/NO2−-N ratios of 1, 2, 3, 4 and 5, the corresponding NO2−-N consumption via anammox was 87.1%, 52.2%, 29.3%, 23.7% and 16.3%, respectively. However, with the carbon source of sodium propionate and glucose, the anammox bacteria was found to perform higher nitrite competitive ability than denitrifiers at the COD/NO2−-N ratio of 5. Also, the SNAD biofilm could perform anammox activity at 15 °C with the nitrogen removal rate of 0.071 kg total inorganic nitrogen per kg volatile suspended solids per day. These results indicated that the SNAD biofilm process might be feasible for the treatment of municipal wastewater at normal temperature.


Sign in / Sign up

Export Citation Format

Share Document