Study on Corrugated Steel Web Bridge Seismic Isolation Technology in High Intensity Seismic Region

2014 ◽  
Vol 919-921 ◽  
pp. 965-968
Author(s):  
Hong Xue Li ◽  
Yong Ming Zhao

The rapid development of modern seismic isolation technology has opened up new avenues of bridge seismic. For the bridge structure in highly seismic region,seismic isolation devices reduce the effects of the earthquake damage to bridges, but also reduce the ability of the bridge structure to resist other loads along with the increase of the displacement under seismic action. Nowadays, there are few engineering examples of the composite bridge with corrugated steel webs using seismic isolation technology. In this paper, we use Bridge Xiaoshagou as an example to study isolation technology with nonlinear time history analysis.

2013 ◽  
Vol 405-408 ◽  
pp. 1674-1677
Author(s):  
Bo Yu ◽  
Di Liu ◽  
Lu Feng Yang

Peak displacement is one of the most important parameters for the performance based seismic design of bridge structure, while the peak displacement is often significantly impacted by the P-Δ effect. In this study, the influence of the P-Δ effect on the statistics of peak displacement of bridge structure was quantificationally investigated based on a series of nonlinear time-history analysis. The bridge structure was idealized as the single degree of freedom (SDOF) system and the hysteretic behaviour was represented by the improved Bouc-Wen model. The statistic analysis was implemented based on the inelastic dynamic responses of the SDOF system under 69 selected earthquake records. The results show that the P-Δ effect has significant impact on the mean and dispersion of peak displacement of bridge structures, especially if the normalized yield strength and the natural vibration period are small.


2015 ◽  
Vol 744-746 ◽  
pp. 335-339
Author(s):  
Hong Dong Ran ◽  
Le Chen ◽  
Yun Mei Ma

Four single-story single-span Gabled Frame Structures (GFSs) which included in China national Standard Design Drawing of Light-weight Steel Structure with Gabled Frame (02SG518-1) were studied and their longitudinal seismic performances were evaluated through extensive nonlinear time-history analysis using eight ground motions representing the Frequent Earthquake, DBE and the MCE hazard levels, the load-bearing performances, deformation capacities and the curves of displacement were studied. The analysis results showed that the longitudinal seismic action of all GFSs considered in this study is very little, the displacement at the top of the column can satisfy the demands of the Technical Specificationfor Steel Structure of Light-weight Building with Gabled Frames even in MCE. The GFSs designed followed the Specificaiton have the excellent longitudinal seismic performance.


2014 ◽  
Vol 578-579 ◽  
pp. 1361-1365
Author(s):  
Lin Liu ◽  
Xuan Min Li ◽  
Wei Tian

Friction Pendulum Systems have been used as base isolation systems for both new construction and retrofit around the world. This paper presented its implementation in an office building located in Shanghai. To evaluate its impact on seismic performance of the retrofitted structure, models are needed to capture the intricate nonlinear behavior of both structural components and isolator elements. Nonlinear time history analysis of the building for the original and retrofitted cases was conducted to assess the efficiency of the isolation system at the high earthquake level. The numerical results indicate that the retrofitted structure experiences significantly less damage and less deformation due to the shake isolation and energy dissipation through the isolators.


Author(s):  
John X. Zhao ◽  
Jian Zhang

In this study, we present an inelastic demand spectrum for the design of seismically-isolated structures using lead-rubber bearings or other types of isolators with bi-linear hysteresis loops and the inelastic spectrum can be used in the design of seismically-isolated structures in a very similar manner to capacity spectrum method. The inelastic demand spectrum is a very useful design tool for visual selection of optimal isolation parameters, and eliminates the use of equivalent linear-elastic substitute structures as the displacement demand is obtained from nonlinear time history analysis. The responses of seismically-isolated structures subjected to near-source ground motions with either large forward-directivity pulses or fault-fling pulses are presented. Our analyses suggest that seismic isolation can be used to protect structures subjected to recorded ground motions currently available to us, with acceptable levels of base shear coefficient and isolator displacement, except for one component of the TCU068 record from the 1999 Chichi, Taiwan, earthquake (which contained a large permanent displacement of nearly 10 m).


2012 ◽  
Vol 204-208 ◽  
pp. 3592-3595
Author(s):  
Xiao Song ◽  
Peng Li ◽  
Guang Sheng Xu

Design process and the nonlinear time history analysis for base isolation system is performed in this paper. The results show that the earthquake acceleration and displacement response of isolated structure can be significantly reduced. Application of the isolation system to improve the seismic capacity of the structure,can effectively reduce the response of upper structure of in earthquake.


2021 ◽  
Vol 248 ◽  
pp. 01001
Author(s):  
Shu-jiang Jiang ◽  
Shun-zhong Yao ◽  
De-wen Liu

This paper uses SAP2000 finite element software to perform nonlinear time history analysis of nine structural systems, and compares the period, total floor displacement, base shear force, vertex displacement, and top acceleration of the structure under the action of an 8-degree rare earthquake. The research results show that seismic isolation and damping technology can effectively reduce the impact of earthquakes on structures.


2017 ◽  
Vol 25 (4) ◽  
pp. 34-46
Author(s):  
B. Athamnia ◽  
A. Ounis ◽  
M. Abdeddaim

AbstractThis study focuses on the soft-storey behavior of RC structures with lead core rubber bearing (LRB) isolation systems under near and far-fault motions. Under near-fault ground motions, seismic isolation devices might perform poorly because of large isolator displacements caused by large velocity and displacement pulses associated with such strong motions. In this study, four different structural models have been designed to study the effect of soft-storey behavior under near-fault and far-fault motions. The seismic analysis for isolated reinforced concrete buildings is carried out using a nonlinear time history analysis method. Inter-story drifts, absolute acceleration, displacement, base shear forces, hysteretic loops and the distribution of plastic hinges are examined as a result of the analysis. These results show that the performance of a base isolated RC structure is more affected by increasing the height of a story under nearfault motion than under far-fault motion.


2014 ◽  
Vol 580-583 ◽  
pp. 1458-1462
Author(s):  
Min Sheng Guan ◽  
Hong Biao Du ◽  
Wei Chen ◽  
Yu Hua Wu

Using the three-strut model, five types of frame structures, i.e., without infilled walls, with full infilled walls, without bottom-storey infilled walls, without middle-storey infilled walls and without top-storey infilled walls, were studied. The mode analysis and nonlinear time-history analysis were carried out on each model. In order to investigate the effects of infilled walls with different configurations on the seismic behavior of reinforced concrete frame structures, the structural periods, the ratio of Tt to T1 and the maximum interstorey drifts were analyzed. The results indicate that the infilled walls enhance the lateral stiffness of frames, and the configuration of infilled walls has little influence on the calculation of structural periods. It also shows that the weaker storey is formed due to the unreasonable layout of infilled walls, thus leading to the collapse of the whole structures under the seismic action.


2012 ◽  
Vol 446-449 ◽  
pp. 1132-1137 ◽  
Author(s):  
Shuai Wang ◽  
Liu Han Wen Heisha ◽  
Fang Yu ◽  
Guo Xiang Wang

In order to research the different types of isolation bearings impact on bridge performance, parameters of lead rubber bearing, super high damping rubber bearing and friction pendulum bearing are designed for the three-span continuous bridge. With the method of nonlinear time-history analysis, dynamic characteristic of this isolated bridge is studied by using sap2000. Analysis results show that the isolated bridge with three types isolation bearings has a good seismic isolation effect under rare earthquake. The difference of shear force between friction pendulum and other two types is about 4% below.


2013 ◽  
Vol 405-408 ◽  
pp. 1678-1681
Author(s):  
Bo Yu ◽  
Di Liu ◽  
Lu Feng Yang

Residual displacement has been identified as one of the most important parameter to assess the reparability and usability of bridge structures after strong earthquake, which is significantly impacted by the P-Δ effect. In this study, the influence of the P-Δ effect on the probabilistic characteristics of residual displacement of bridge structure was quantificationally investigated based on a series of nonlinear time-history analysis. The bridge structure was idealized as the single-degree-of-freedom (SDOF) system and the hysteretic behaviour was represented by the improved Bouc-Wen model. The statistic analysis was implemented based on the inelastic dynamic responses of the SDOF system under 69 selected earthquake records. The results show that the P-Δ effect has significant impact on the residual displacement, especially for systems with large stability factor and/or small post-yield stiffness ratio and yield strength.


Sign in / Sign up

Export Citation Format

Share Document