Combustion Synthesis of Si3N4/MoSi2 Composite

2010 ◽  
Vol 92 ◽  
pp. 41-45
Author(s):  
Jian Guang Xu ◽  
Shi Bo Guo ◽  
Jian Hui Yan ◽  
Da Gong Zhang

Si3N4 particle reinforced MoSi2 composite powder has been successfully synthesized combustion synthesis method. XRD and SEM results showed that the combustion product was mainly composed by MoSi2 and Si3N4. The as-prepared Si3N4/MoSi2 composite powder has been pressureless sintered at 1600°C for 1h. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite were 92.2% and 89.6%, respectively. The composite has higher Vicker’s hardness and flexural strength than monolithic MoSi2. Especially the room-temperature fracture toughness of the composite is from 4.21MPa•m1/2 for MoSi2 to 7.25MPa•m1/2 for composite, increased by 72.2%, respectively. The morphology of fractured surface of composite revealed the mechanism of improving mechanical properties of MoSi2 matrix. The results of this work showed that in situ Si3N4/MoSi2 composite powder prepared by combustion synthesis could be successfully pressureless sintered and significant improvement of mechanical properties could be achieved.

2010 ◽  
Vol 105-106 ◽  
pp. 70-74
Author(s):  
Jian Guang Xu ◽  
Hui Qiang Li ◽  
Hou An Zhang

SiC reinforced MoSi2 composites have been successfully prepared by pressureless sintering from mechanical-assistant combustion synthesized powders. The sintering temperatures and holding time were 1500°C~1650°C at a heating rate of 10K/min and 1 hour, respectively. The microstructure and mechanical properties of the as-sintered composites were investigated. SEM micrographs of SiC/MoSi2 composites showed that SiC particles were homogeneously distributed in MoSi2 matrix. The Vickers hardness, flexural strength and fracture toughness of the SiC/MoSi2 composites were up to 15.50GPa, 468.7MPa and 9.35MPa•m1/2, respectively. The morphologies of fractured surface of the composites revealed the mechanism to improve mechanical properties of MoSi2 matrix. At last, the cyclic oxidation behavior of the composites was discussed. The results of this work showed that in situ SiC/MoSi2 composite powder prepared by MASHS technique could be successfully sintered via pressureless sintering process and significant improvement of room temperature mechanical and anti-oxidation properties could be achieved.


1990 ◽  
Vol 194 ◽  
Author(s):  
P. R. Subramanian ◽  
M. G. Mendiratta ◽  
D. B. Miracle ◽  
D. M. Dimiduk

AbstractThe quasibinary NiAI-Mo system exhibits a large two-phase field between NiAl and the terminal (Mo) solid solution, and offers the potential for producing in-situ eutectic composites for high-temperature structural applications. The phase stability of this composite system was experimentally evaluated, following long-term exposures at elevated temperatures. Bend strengths as a function of temperature and room-temperature fracture toughness data are presented for selected NiA1-Mo alloys, together with results from fractography observations.


1994 ◽  
Vol 364 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
W. J. Reeder ◽  
H. A. Lipsitt

AbstractIn-situ composites based on binary Nb-Si alloys and consisting of a Nb solid solution with Nb3Si or Nb5Si3 have shown a promising combination of low temperature and high temperature mechanical properties. The environmental resistance and room temperature fracture toughness of these composites can be further enhanced by additions such as Ti, Hf, Cr, and Al. In the present study, ternary Nb-Ti-Si alloys were prepared by directional solidification to generate aligned two and three phase composites containing a Nb solid solution with Nb3Si and/or Nb5Si3. The present paper will describe microstructures, phase equilibria and fracture toughness of these composites. The improvement in the room temperature fracture toughness over binary Nb-Nb5Si3 composites is discussed.


2006 ◽  
Vol 306-308 ◽  
pp. 941-946
Author(s):  
Sheng Wu Wang ◽  
Tatsuo Tabaru ◽  
Hisatoshi Hirai ◽  
Hideto Ueno

Nb-base in-situ composites with the base composition of Nb-18Si-2HfC were prepared by conventional arc-melting. Their microstructures and mechanical properties, such as high-temperature strength and room temperature fracture toughness, were investigated to elucidate the effects of Re alloying. The in-situ composites predominantly have eutectic microstructures consisting of an Nb solid solution (NbSS) and Nb5Si3. The compressive strength increased with the increasing Re contents at 1470K and not at 1670 K. The strengthening effect observed at 1470 K is higher than that by W and Mo. Re alloying of about 2 % is valuable for improving both the high temperature strength and room temperature fracture toughness of Nb-18Si-2HfC base materials.


2013 ◽  
Vol 549 ◽  
pp. 141-146 ◽  
Author(s):  
Ali Akbar Shokati ◽  
Nader Parvin ◽  
Naser Sabzianpour ◽  
Mohammad Shokati ◽  
Ali Hemmati

2012 ◽  
Vol 1516 ◽  
pp. 255-260 ◽  
Author(s):  
G. Zhang ◽  
L. Hu ◽  
W. Hu ◽  
G. Gottstein ◽  
S. Bogner ◽  
...  

ABSTRACTMo fiber reinforced NiAl in-situ composites with a nominal composition Ni-43.8Al-9.5Mo (at.%) were produced by specially controlled directional solidification (DS) using a laboratory-scale Bridgman furnace equipped with a liquid metal cooling (LMC) device. In these composites, single crystalline Mo fibers were precipitated out through eutectic reaction and aligned parallel to the growth direction of the ingot. Mechanical properties, i.e. the creep resistance at high temperatures (HT, between 900 °C and 1200 °C) and the fracture toughness at room temperature (RT) of in-situ NiAl-Mo composites, were characterized by tensile creep (along the growth direction) and flexure (four-point bending, vertical to the growth direction) tests, respectively. In the current study, a steady creep rate of 10-6s-1 at 1100 °C under an initial applied tensile stress of 150MPa was measured. The flexure tests sustained a fracture toughness of 14.5 MPa·m1/2at room temperature. Compared to binary NiAl and other NiAl alloys, these properties showed a remarkably improvement in creep resistance at HT and fracture toughness at RT that makes this composite a potential candidate material for structural application at the temperatures above 1000 °C. The mechanisms responsible for the improvement of the mechanical properties in NiAl-Mo in-situ composites were discussed based on the investigation results.


2004 ◽  
Vol 10 (4) ◽  
pp. 470-480 ◽  
Author(s):  
B.P. Bewlay ◽  
S.D. Sitzman ◽  
L.N. Brewer ◽  
M.R. Jackson

Nb–silicide in situ composites have great potential for high-temperature turbine applications. Nb–silicide composites consist of a ductile Nb-based solid solution together with high-strength silicides, such as Nb5Si3and Nb3Si. With the appropriate addition of alloying elements, such as Ti, Hf, Cr, and Al, it is possible to achieve a promising balance of room-temperature fracture toughness, high-temperature creep performance, and oxidation resistance. In Nb–silicide composites generated from metal-rich binary Nb-Si alloys, Nb3Si is unstable and experiences eutectoid decomposition to Nb and Nb5Si3. At high Ti concentrations, Nb3Si is stabilized to room temperature, and the eutectoid decomposition is suppressed. However, the effect of both Ti and Hf additions in quaternary alloys has not been investigated previously. The present article describes the discovery of a low-temperature eutectoid phase transformation during which (Nb)3Si decomposes into (Nb) and (Nb)5Si3, where the (Nb)5Si3possesses the hP16 crystal structure, as opposed to the tI32 crystal structure observed in binary Nb5Si3. The Ti and Hf concentrations were adjusted over the ranges of 21 to 33 (at.%) and 7.5 to 33 (at.%) to understand the effect of bulk composition on the phases present and the eutectoid phase transformation.


2014 ◽  
Vol 893 ◽  
pp. 444-448 ◽  
Author(s):  
Xue Mei Liu ◽  
Xiao Yan Song ◽  
Hai Bin Wang ◽  
Yang Gao ◽  
Yao Wang

This study was focused on the effect of VC addition on the microstructure and mechanical properties of the prepared ultrafine grained cemented carbides. VC was added to the rawoxide materials which were synthesized to the WC-Co composite powder by the in-situ reduction and carbonization process. The ultrafine grained WC-Co alloys were fabricated by the spark plasma sintering technique using the prepared WC-Co composite powder. The phase constitution, microstructure characteristics and mechanical properties of the sintered ultrafine grained cemented carbides were analyzed quantitatively. The study proposed that VC plays a significant role in decreaseing the grain size of the prepared WC-Co alloy. The ultrafine grained WC-Co alloy with high comprehensive properties can be obtained as an appropriate addition of VC in the developed process.


2002 ◽  
Vol 753 ◽  
Author(s):  
Toshiya Sakata ◽  
Hiroyuki Y. Yasuda ◽  
Yukichi Umakoshi

ABSTRACTRole of the crystallography of Ni 3Al(γ') precipitates along grain boundaries of NiAl(β) in the mechanical properties was systematically investigated using β bicrystals with controlled orientations. γ' phase preferentially precipitated along βgrain boundaries showing a film-like shape. The selected variant of γ'-film satisfied the Kurdjumov-Sachs (K-S) relation with a neighboring βcrystal but it deviated from the relation with another adjacent βcrystal. In the course of tensile deformation at room temperature, fracture occurred preferentially at incoherent (β/γ') interphase boundary deviating from the K-S relation and the fracture stress decreased with increasing deviation angle. In contrast, the interphase boundary sliding occurred preferentially at irrational (β/γ') interface at 1073K. The sliding displacement increased with increasing deviation angle. Thus, the mechanical properties of β bicrystals with γ'-film were found to depend strongly on the interphase boundary character.


Sign in / Sign up

Export Citation Format

Share Document