Study on the Synthesis Process of Carbon Nanotubes

2014 ◽  
Vol 926-930 ◽  
pp. 254-257
Author(s):  
A Ying Zhang

Current use and application of nanotubes has mostly been limited to the use of bulk nanotubes, which is a mass of rather unorganized fragments of nanotubes. Bulk nanotube materials may never achieve a tensile strength similar to that of individual tubes, but such composites may, nevertheless, yield strengths sufficient for many applications. Bulk carbon nanotubes have already been used as composite fibers in polymers to improve the mechanical, thermal and electrical properties of the bulk product. The strength and flexibility of carbon nanotubes makes them of potential use in controlling other nanoscale structures, which suggests they will have an important role in nanotechnology engineering.

2018 ◽  
Vol 7 (6) ◽  
pp. 475-485 ◽  
Author(s):  
Sagar Roy ◽  
Roumiana S. Petrova ◽  
Somenath Mitra

AbstractThe effect of carbon nanotube (CNT) functionalization in altering the properties of epoxy-CNT composites is presented. The presence of functional groups effectively influenced the colloidal behavior of CNTs in the precursor epoxy resin and the hardener triethylenetetramine (TETA), which affected the synthesis process and eventually the interfacial interactions between the polymer matrix and the CNTs. The physical, thermal, and electrical properties of the composites exhibited strong dependence on the nature of functionalization. At a 0.5-wt% CNT loading, the enhancement in tensile strength was found to be 7.2%, 11.2%, 11.4%, and 14.2% for raw CNTs, carboxylated CNTs, octadecyl amide-functionalized CNTs, and hydroxylated CNTs, respectively. Glass transition temperatures (Tg) also varied with the functionalization, and composites prepared using hydroxylated CNTs showed the maximum enhancement of 34%.


2015 ◽  
Vol 25 (31) ◽  
pp. 4985-4993 ◽  
Author(s):  
Lakshmy Pulickal Rajukumar ◽  
Manuel Belmonte ◽  
John Edward Slimak ◽  
Ana Laura Elías ◽  
Eduardo Cruz-Silva ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (55) ◽  
pp. 33178-33188
Author(s):  
V. Naveen ◽  
Abhijit P. Deshpande ◽  
S. Raja

Carbon nanotubes incorporated microcapsules based self-heating composites.


2010 ◽  
Vol 63 (5) ◽  
Author(s):  
Jacob M. Wernik ◽  
Shaker A. Meguid

This review summarizes the most recent advances in multifunctional polymer nanocomposites reinforced by carbon nanotubes and aims to stimulate further research in this field. Experimental and theoretical investigations of the mechanical, thermal, and electrical properties of carbon nanotubes and their composite counterparts are presented. This review identifies the processing challenges associated with this class of materials and presents techniques that are currently being adopted to address these challenges and their relative merits. This review suggests possible future trends, opportunities, and challenges in the field and introduces the use of these multifunctional nanocomposites in structural health monitoring applications.


2011 ◽  
Vol 299-300 ◽  
pp. 802-805
Author(s):  
Jing Long Gao ◽  
Yan Hui Liu

In this work, the carbon nanotubes(CNTs) were reinforced with polypropylene(PP)matrix resins to improve the electrical and thermal properties of PP/ CNTs composites in different contents of 0,1, 3,and 5 wt.%. The surface, volume resistivity and crystallization type of the composites were investigated. As a result, the maximum degradation rate temperature of the composite is improved 30 °C, the surface resistivity and volume resistivity of composite are 5 ×106, 7 ×105,respectively, for the optimum composition of composite (CNTs 3 wt.%). The integrated XRD pattern of the composites shows the typical α-form PP crystals.


2016 ◽  
Vol 49 (4) ◽  
pp. 345-355 ◽  
Author(s):  
Mou’ad A Tarawneh ◽  
Sahrim Ahmad ◽  
Ruey Shan Chen

This article studies the enhancement in the properties of thermoplastic natural rubber (TPNR) reinforced by graphene oxide (GnO) and multiwalled carbon nanotubes (MWCNTs). TPNR is a blend of polypropylene and liquid natural rubber (NR), which is used as a compatibilizer and NR at a percentage of volume ratio 70:10:20, respectively. Using TPNR as the host matrix, a number of TPNR/carbon nanotubes (CNTs), TPNR/GnO, and hybrid TPNR/GnO/CNTs nanocomposites are processed and their mechanical, thermal, and electrical properties are characterized. The results extracted from tensile and impact test showed that tensile strength, Young’s modulus, and storage modulus of TPNR/GnO/MWCNTs hybrid nanocomposite increased as compared with TPNR composite and TPNR/GnO nanocomposite but lower than TPNR/MWCNTs nanocomposite. On the other hand, the elongation at break considerably decreased with increasing the content of both types of nanoparticles. Based on the experimental results, the thermal, electrical conductivity of a 0.5 wt% MWCNTs-reinforced sample increased as compared with a pure TPNR and other MWCNTs/GnO-reinforced composites. The improved dispersion properties of the nanocomposites can be due to altered interparticle interactions. MWCNTs, GnO, and MWCNTs–GnO networks are well combined to generate a synergistic effect that is shown by scanning electron microscopy micrographs. With the existence of this network, the mechanical, thermal, and electrical properties of the nanocomposite were improved significantly.


Sign in / Sign up

Export Citation Format

Share Document