Research on the Ni-Cr Alloy Coatings on the Hydraulic Prop by High-Frequency Induction Cladding

2014 ◽  
Vol 936 ◽  
pp. 1878-1881
Author(s):  
Fu Dong Zhu ◽  
Bi Yun Zhu ◽  
Juan Liu

Ni-based cladding coatings are prepared on the surface of hydraulic prop mobile column by high-frequency induction cladding with different current. Microstructures of coatings are analyzed by metallographic microscope as well as SEM, while coatings and matrix elements are analyzed by EDS. The results show that metallurgical bonding is formed among transition regions of matrix and coatings with obvious white band, when cladding frequency is 250KHz and current is 1160A. The microstructures of coatings are eutectics of austenite + carbide, relatively uniform. During the process of cladding, Fe as well as Mn in matrix permeats to coatings; while Si element in coatings permeats to matrix. As a result, the Fe content of trasition regions is raised, and the contents of Ni and Cr is comparatively reduced.

2011 ◽  
Vol 675-677 ◽  
pp. 1299-1302 ◽  
Author(s):  
Xin Wei ◽  
Gui Qin Wang ◽  
Yong Feng Chang ◽  
Chao Liu

In this paper, WC-Ni60 alloy composite coating with different contents of WC particles was prepared on the 45steel substrate by high frequency induction cladding. The Composition and microstructure were characterized by X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA), the abradability and hardness were tested by UMT-2 tribometer and HV-50A durometer, respectively. The results showed that the hardness and wear resistance of coating were enhanced with the increasing of WC content. WC-Ni60 coating obtained the best wear resistance with the content of 50% WC. The hardness of the coating got the highest when the content of WC was 60%, but wear resistance decreased. The WC-Ni60 coating was reinforced for various hard phases and the metallurgical bonding layer about 10μm was formed between coating and 45steel substrate.


2014 ◽  
Vol 936 ◽  
pp. 1657-1661 ◽  
Author(s):  
Fu Dong Zhu ◽  
Bi Yun Zhu ◽  
Bin Liu

The temperature field of mobile column is simulated, with the theory of high frequency induction heating and fourier heat conduction law , to analyze the change law of the temperature field with time, with different cladding parameters. The results show that the induction heating speed is mainly affected by power frequency of high frequency induction heating and cladding current. The higher frequency induction heating power is or the larger the cladding current is, the the faster the surface temperature of hydraulic prop is rising, the lower the inside-wall termperature and the less influenced the matrix is. The effect and the efficiency of cladding is comparatively superior when cladding frequency is 250KHz and current is 1160A.


2011 ◽  
Vol 49 (03) ◽  
pp. 231-236 ◽  
Author(s):  
Song-Lee Du ◽  
Sung-Hun Cho ◽  
In-Yong Ko ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

2018 ◽  
Vol 60 (7-8) ◽  
pp. 727-732
Author(s):  
Uğur Çavdar ◽  
İ. Murat Kusoglu ◽  
Ayberk Altintas

2021 ◽  
Vol 11 (11) ◽  
pp. 4947
Author(s):  
Myung-hwan Lim ◽  
Changhee Lee

To improve recycling quality, it is necessary to develop a demolition technology that can be combined with existing crushing methods that employ large shredding-efficient equipment. The efficient collection of bones in a segmentation dismantling method must be considered according to the procedure. Furthermore, there is a need for the development of partial dismantling technologies that enable efficient remodeling, maintenance, and reinforcement. In this study, we experimentally investigated the temperature-rise characteristics of reinforced concrete through partial rapid heating during high-frequency induced heating. Accordingly, the chemical and physical vulnerability characteristics of the reinforced concrete were verified by studying the thermal conduction on the surface of the rebars and the cracks caused by the thermal expansion pressure of the rebars. Furthermore, we aimed to verify the applicability of the proposed technology by specifying the vulnerability range of the reinforced concrete based on the heating range, as well as the appropriate energy consumption. We investigated the temperature rise and temperature distribution characteristics of the rebar surfaces based on diameter, length, bar placement conditions, heating distance, heating coil location, and output, using reinforced steel of grade SD345. Maximum powers of 5, 6, and 10 kW, and inductive heating were used to achieve satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document