Design Methodologies of Ship General Arrangements - A Review

2014 ◽  
Vol 936 ◽  
pp. 2344-2351 ◽  
Author(s):  
Duan Feng Han ◽  
Hany Abdelkhalek ◽  
Miao Chen

This paper presents an overview of ship general arrangement design methodologies and philosophies and early-stage design capabilities, particularly during the last decade. The arrangement of a ship has a unique feature in that it can both enable successful shipboard operations and constrain the performance of all subsystems. Stable ship layout is critical to producible, and therefore cost effective, designs and time. This paper overviews the efforts made by the researchers in the last decade to improve generating the arrangement rapidly . Also, identify areas of the ship general arrangements process that are insufficiently addressed or not addressed at all in order to keep pushing the field of general arrangements forward.

2014 ◽  
Author(s):  
Robert G. Keane ◽  
Laury Deschamps ◽  
Steve Maguire

The Office of the Under Secretary of Defense, Acquisition, Technology and Logistics (AT&L) recently presented analyses of cost and schedule growth on Major Defense Acquisition Programs (MDAPs)over the last 20 years (2013, 2014). For naval ships, AT&L (2013) concluded that contract work content growth (not capability growth) dominates total cost growth statistically. In addition, costs-over-target are significant and reflect poor cost estimation or faulty framing assumptions. AT&L (2014) also concluded prices on fixed-price contracts are only “fixed” if the contractual work content remains fixed, but this is often not the case. The authors show that under-sizing the ship during concept design studies increases ship outfit density and adds complexities to the design. These early stage design decisions on sizing the ship are a major contributor to unnecessary work content growth later in Detail Design and Construction (DD&C) that cannot be eliminated no matter how productive the shipbuilder. However, new ship design methods are being developed and integrated with legacy physics-based design and analysis tools into a Rapid Ship Design Environment (RSDE)that will enable a more rational process for initially sizing ships. The authors also identify the need for early stage design measures of complexity and ship costing tools that are more sensitive to these measures, and proposed solutions that will aid decision-makers in reducing DD&C work content by making cost-effective design decisions in early stage naval ship design.


2016 ◽  
Vol 32 (02) ◽  
pp. 110-123
Author(s):  
Robert G. Keane ◽  
Laurent Deschamps ◽  
Steve Maguire

The Office of the Under Secretary of Defense, Acquisition, Technology, and Logistics (AT&L) recently presented analyses of cost and schedule growth on Major Defense Acquisition Programs (MDAPs) over the last 20 years (2013, 2014). For naval ships, AT&L (2013) concluded that contract work content growth (not capability growth) dominates total cost growth statistically. In addition, costs-over-target are significant and reflect poor cost estimation or faulty framing assumptions. AT&L (2014) also concluded prices on fixed-price contracts are only "fixed" if the contractual work content remains fixed, but this is often not the case. We show that under-sizing the ship during concept design studies increases ship outfit density and adds complexities to the design. These early-stage design decisions on sizing the ship are a major contributor to unnecessary work content growth later in Detail Design and Construction (DD&C) that cannot be eliminated no matter how productive the shipbuilder. However, new ship design methods are being developed and integrated with legacy physicsbased design and analysis tools into a Rapid Ship Design Environment (RSDE) that will enable a more rational process for initially sizing ships. We also identify the need for early-stage design measures of complexity and ship costing tools that are more sensitive to these measures, and propose solutions that will aid decision-makers in reducing DD&C work content by making cost-effective design decisions in early-stage naval ship design.


2021 ◽  
Vol 1 ◽  
pp. 11-20
Author(s):  
Owen Freeman Gebler ◽  
Mark Goudswaard ◽  
Ben Hicks ◽  
David Jones ◽  
Aydin Nassehi ◽  
...  

AbstractPhysical prototyping during early stage design typically represents an iterative process. Commonly, a single prototype will be used throughout the process, with its form being modified as the design evolves. If the form of the prototype is not captured as each iteration occurs understanding how specific design changes impact upon the satisfaction of requirements is challenging, particularly retrospectively.In this paper two different systems for digitising physical artefacts, structured light scanning (SLS) and photogrammetry (PG), are investigated as means for capturing iterations of physical prototypes. First, a series of test artefacts are presented and procedures for operating each system are developed. Next, artefacts are digitised using both SLS and PG and resulting models are compared against a master model of each artefact. Results indicate that both systems are able to reconstruct the majority of each artefact's geometry within 0.1mm of the master, however, overall SLS demonstrated superior performance, both in terms of completion time and model quality. Additionally, the quality of PG models was far more influenced by the effort and expertise of the user compared to SLS.


Procedia CIRP ◽  
2015 ◽  
Vol 28 ◽  
pp. 125-130 ◽  
Author(s):  
M. Colledani ◽  
L. Bolognese ◽  
D. Ceglarek ◽  
F. Franchini ◽  
C. Marine ◽  
...  

1988 ◽  
Vol 25 (04) ◽  
pp. 239-252
Author(s):  
G. Robed Lamb

Even though in 1987 there were only a dozen SWATH (smali-waterplane-area twin-hull) craft and ships afloat around the world, word of their markedly superior seakeeping performance is spreading rapidly. The number of SWATH vessels is likely to double within five years. As in many other areas of technology, the United States and Japan are the acknowledged leaders in the development and practical application of the SWATH concept. This paper reviews the characteristics of existing SWATH craft and ships from the standpoint of the stated seakeeping objective. Hull form differences between four SWATH craft and ships, including the Navy's SSP Kairnalino, are analyzed and interpreted. Important considerations for the early-stage design of a SWATH ship are discussed. Differences in the range of feasible hull form geometries for coastal areas and unrestricted ocean operations, and for low-speed versus moderately high-speed applications, are pointed out.


2021 ◽  
Author(s):  
Jonathan M. Smyth ◽  
Robert J. Miller

Abstract This paper proposes a new duty-based Smith Chart as part of an improved method of selecting the geometric topology of compressors (axial, mixed or radial) in the earliest stage of design. The method has a number of advantages over previous methods: it is based on the non-dimensional flow and the non-dimensional work, which aligns with the aerodynamic function of the compressor and is therefore more intuitive than specific speed and specific diameter. It is based on a large number of consistently designed compressor rotors which have been computationally predicted using RANS CFD. Most importantly, it provides the designer not only with a choice of topology but also with the complete meridional geometry of the compressor, its blade design and the number of blades. This fidelity of geometry at the very early stage of design allows the designer to undertake a true systems design optimization (noise, manufacturing, packaging constraints and cost). This has the major advantage of significantly reducing early stage design times and costs and allows the designer to explore completely new products more quickly.


Sign in / Sign up

Export Citation Format

Share Document