Enhanced Electrochemical Performances of LiFePO4/C Cathode Materials by Deposited with Ge Film

2014 ◽  
Vol 936 ◽  
pp. 480-485
Author(s):  
Yan Dan Huang ◽  
Ying Bin Lin ◽  
Zhi Gao Huang

LiFePO4/C-Ge electrodes were prepared with vacuum thermal evaporation deposition by depositing Ge films on as-prepared LiFePO4/C electrodes. The effect of Ge film on the electrochemical performances of LiFePO4/C cells was investigated systematically by charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. It was found that Ge-film-surface modified LiFePO4/C showed excellent electrochemical performances compared to that of the pristine one in terms of cyclability and rate capability. At 60°C, LiFePO4/C-Ge film exhibited outstanding cyclability with less than 5% capacity fade after 50 cycles while the pristine one suffers 15%. Analysis from the electrochemical measurements showed that the presence of Ge film on the LiFePO4/C electrode would protect active material from HF generated by the decomposition of LiPF6 in the electrolyte and stabilize the surface structure of active material during the charge and discharge cycle. Electrochemical impedance spectroscopy (EIS) results indicated that Ge film mainly reduced the charge transfer resistance Rct of LiFePO4/C electrode, resulting from the suppression of the solid electrolyte interfacial (SEI) film.

2015 ◽  
Vol 15 (10) ◽  
pp. 8042-8047 ◽  
Author(s):  
Minchan Jeong ◽  
Hyun-Soo Kim ◽  
Dong-Sik Bae ◽  
Chang-Woo Lee ◽  
Bong-Soo Jin

In this study, the Li3V2–X YX(PO4)3 compounds have been synthesized by a simple solid state method. In addition, a polyurethane was added to apply carbon coating on the surface of the Li3V2–X YX(PO4)3 particles for enhancement of the electrical conductivity. The crystal structure and morphology of the synthesized Li3V2–XYX(PO4)3/C (LVYP/C) was investigated using an X-ray diffraction (XRD) and a scanning electron microscopy (SEM) systematically. The electrochemical performance of synthesized material, such as the initial capacity, rate capability, cycling performance and EIS was evaluated. The sizes of synthesized particle ranged from 1 to 5 μm. The Li3V2–XYX(PO4)3/C (X = 0.02) delivered the initial discharge capacity of 171.5 mAh · g–1 at 0.1C rate. It showed a capacity retention ratio of 73.0% at 1.0C after 100th cycle. The electrochemical impedance spectroscopies (EIS) results revealed that the charge transfer resistance of the material decreases by Y doping.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 788
Author(s):  
Hien T. Ngoc Le ◽  
Sungbo Cho

Aggregation of amyloid-β (aβ) peptides into toxic oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer’s disease (AD) and is the primary focus of AD diagnostics. Disaggregation or elimination of toxic aβ aggregates in patients is important for delaying the progression of neurodegenerative disorders in AD. Recently, 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) was introduced as a chemical agent that binds with toxic aβ aggregates and transforms them into monomers to reduce the negative effects of aβ aggregates in the brain. However, the mechanism of aβ disaggregation by EPPS has not yet been completely clarified. In this study, an electrochemical impedimetric immunosensor for aβ diagnostics was developed by immobilizing a specific anti-amyloid-β (aβ) antibody onto a self-assembled monolayer functionalized with a new interdigitated chain-shaped electrode (anti-aβ/SAM/ICE). To investigate the ability of EPPS in recognizing AD by extricating aβ aggregation, commercially available aβ aggregates (aβagg) were used. Electrochemical impedance spectroscopy was used to probe the changes in charge transfer resistance (Rct) of the immunosensor after the specific binding of biosensor with aβagg. The subsequent incubation of the aβagg complex with a specific concentration of EPPS at different time intervals divulged AD progression. The decline in the Rct of the immunosensor started at 10 min of EPPS incubation and continued to decrease gradually from 20 min, indicating that the accumulation of aβagg on the surface of the anti-aβ/SAM/ICE sensor has been extricated. Here, the kinetic disaggregation rate k value of aβagg was found to be 0.038. This innovative study using electrochemical measurement to investigate the mechanism of aβagg disaggregation by EPPS could provide a new perspective in monitoring the disaggregation periods of aβagg from oligomeric to monomeric form, and then support for the prediction and handling AD symptoms at different stages after treatment by a drug, EPPS.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Minna Toivola ◽  
Janne Halme ◽  
Lauri Peltokorpi ◽  
Peter Lund

Effects of aging and cyclically varying temperature on the electrical parameters of dye solar cells were analyzed with electrochemical impedance spectroscopy. Photoelectrode total resistance increased as a function of time due to increasing electron transport resistance in theTiO2film. On the other hand, photoelectrode recombination resistance was generally larger, electron lifetimes in theTiO2were film longer, and charge transfer resistance on the counter electrode was smaller after the temperature treatments than before them. These effects correlated with the slower deterioration rate of the temperature-treated cells, in comparison to the reference cells.


Chemosensors ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27
Author(s):  
Georg Christoph Brunauer ◽  
Oliver Spadiut ◽  
Alfred Gruber ◽  
Christoph Slouka

Electrochemical impedance spectroscopy is a powerful tool in life science for cell and pathogen detection, as well as for cell counting. The measurement principles and techniques using impedance spectroscopy are highly diverse. Differences can be found in used frequency range (β or α regime), analyzed quantities, like charge transfer resistance, dielectric permittivity of double layer capacitance and in off- or online usage. In recent contributions, applications of low-frequency impedance spectroscopy in the α regime were tested for determination of cell counts and metabolic burden in Escherichia coli and Saccharomyces cerevisiae. The established easy to use methods showed reasonable potential in the lab scale, especially for S. cerevisiae. However, until now, measurements for cell counts in food science are generally based on Thoma cell counting chambers. These microscopic cell counting methods decelerate an easy and quick prediction of yeast viability, as they are labor intensive and result in a time delayed response signal. In this contribution we tested our developed method using low frequency impedance spectroscopy locally at an industrial brewery propagation site and compared results to classic cell counting procedures.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4507 ◽  
Author(s):  
Yusuke Abe ◽  
Natsuki Hori ◽  
Seiji Kumagai

Lithium-ion batteries (LIBs) using a LiFePO4 cathode and graphite anode were assembled in coin cell form and subjected to 1000 charge-discharge cycles at 1, 2, and 5 C at 25 °C. The performance degradation of the LIB cells under different C-rates was analyzed by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. The most severe degradation occurred at 2 C while degradation was mitigated at the highest C-rate of 5 C. EIS data of the equivalent circuit model provided information on the changes in the internal resistance. The charge-transfer resistance within all the cells increased after the cycle test, with the cell cycled at 2 C presenting the greatest increment in the charge-transfer resistance. Agglomerates were observed on the graphite anodes of the cells cycled at 2 and 5 C; these were more abundantly produced in the former cell. The lower degradation of the cell cycled at 5 C was attributed to the lowered capacity utilization of the anode. The larger cell voltage drop caused by the increased C-rate reduced the electrode potential variation allocated to the net electrochemical reactions, contributing to the charge-discharge specific capacity of the cells.


Soft Matter ◽  
2014 ◽  
Vol 10 (34) ◽  
pp. 6467-6476 ◽  
Author(s):  
Choonghyun Sung ◽  
Katelin Hearn ◽  
Jodie Lutkenhaus

Layer-by-layer assemblies exhibit increased conductivity and decreased charge transfer resistance upon heating through the thermal transition.


2011 ◽  
Vol 197-198 ◽  
pp. 1157-1162 ◽  
Author(s):  
Sheng Kui Zhong ◽  
You Wang ◽  
Chang Jiu Liu ◽  
Yan Wei Li ◽  
Yan Hong Li

The layered Y-doped SnO2/C anode materials were prepared by a co-precipitation method. The physical properties of the Y-doped SnO2/C were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. XRD studies showed that the Y-doped SnO2/C has the same layered structure as the undoped SnO2/C. The SEM images exhibited that the particle size of Y-doped SnO2/C is smaller than that of the undoped SnO2/C and the smallest particle size is only about 1µm. The Y-doped SnO2/C samples were investigated on the Lithium extraction/insertion performances by charge/discharge, cyclic voltammograms (CV), and electrochemical impedance spectra (EIS). The results showed that the optimal doping content of Y was that x=0.07 and 2% content of carbon nanotubes samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility and electronic conductivity were enhanced, and the charge transfer resistance was decreased through Y-doping.


2010 ◽  
Vol 113-116 ◽  
pp. 1810-1813
Author(s):  
Fang Xiao ◽  
You Long Xu

MnO2 films were electrodeposited on the Ti substrates by galvanostatic method in various plating solutions, which was MnCl2, Mn(NO3)2, MnSO4 and Mn(CH3COO)2 solutions, respectively. On X-ray diffraction test, Crystal structures of all MnO2 films were associated to α-MnO2 of tetragonal crystal system. Scanning electron microscopy results show that morphologies of MnO2 films were clearly different. Among them, MnO2 film prepared in Mn(CH3COO)2 solution presented a lot of cracks and holes. According to electrochemical impedance spectrum analysis, this MnO2 film presents the lowest charge-transfer resistance. Additionally, electrochemical active surface areas of MnO2 films were calculated on the basis of equivalent circuit model for impedance data. The result was found that MnO2 film prepared in Mn(CH3COO)2 solution showed the biggest electrochemical active surface area, which was about 382 cm2. Cyclic voltammograms were carried out for all the samples. MnO2 film formed in Mn(CH3COO)2 solution showed the highest special capacitance of 230 F g-1. The results suggest that Mn(CH3COO)2 solution is suitable for electrodepositing MnO2 film using supercapacitor electrode materials.


Sign in / Sign up

Export Citation Format

Share Document