A New Evaluation Way for the Adaptability of CO2 Flooding Reservoirs Based on Cluster Analysis

2014 ◽  
Vol 962-965 ◽  
pp. 457-460 ◽  
Author(s):  
Jing Jie Yao ◽  
Zhi Ping Li ◽  
Yang Chen

Carbon dioxide miscible flooding in oil reservoirs is a general method of enhancing oil recovery, nevertheless, not all reservoirs adapt to this method. Therefore, evaluating the adaptability of carbon dioxide flooding reservoirs becomes an important problem which is urged to be solved. Through the research of carbon dioxide flooding situation and displacement mechanism, twelve factors which influenced the oil displacement effect could be obtained. Compared factors with oil recovery by means of the advanced analysis of SPSS, and chose ten factors to be the evaluating indices which could apply in cluster analysis. Through building mathematical model and clustering reservoirs, the adaptability of carbon dioxide flooding could be evaluated comprehensively. Apply this method to cluster nine typical reservoirs which have adopted carbon dioxide flooding, the results show that, this method can evaluate the adaptability of carbon dioxide flooding reservoirs, which is corresponding to the real exploitation effect.

Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2014 ◽  
Vol 694 ◽  
pp. 354-358 ◽  
Author(s):  
Ke Liang Wang ◽  
Xue Li ◽  
Shu Jie Sun ◽  
Jin Yu Li ◽  
Yuan Yuan ◽  
...  

The poor oil resistance of traditional foam system leads to gas channeling and low oil recovery in the process of foam flooding field trial. Aiming at this phenomenon, a new oil resistant and low tension foam system is proposed. Firstly, dodecyl hydroxypropyl phosphate betaine and fluorocarbon 101005 were selected as oil resistant foaming agents from several high performance foaming agents. Then, mixed the two agents with low tension betaine in certain proportions to form oil resistant and low tension foam system and compared oil displacement effect with single foam system, traditional foam system and single low tension system. Experimental results show that, foam performance of oil resistant and low tension foam system is the best in the presence of oil, and the foam flooding recovery reaches to 16.10%, which is much higher than that of single foam system, traditional foam system and single low tension system.


2021 ◽  
Vol 21 (1) ◽  
pp. 28-35
Author(s):  
Stanislav A. Stanislav A. ◽  
◽  
Oleg A. Morozyuk ◽  
Konstantin S. Kosterin ◽  
Semyon P. Podoinitsyn ◽  
...  

As an option for enhancing oil recovery of a high-viscosity Permo-Carboniferous reservoir associated with the Usinskoye field, the use of technology based on technogenic carbon dioxide as an injection agent is considered. In the world practice, several fields are known as close in their parameters to the parameters of the Permo-Carboniferous reservoir, and in which CO2 injection was accepted as successful. Based on this, CO2 injection can potentially be applicable in the conditions of a Permo-Carboniferous reservoir. At present, as a result of the various development technologies implementation, reservoir zones are distinguished, characterized by different thermobaric properties. Depending on reservoir conditions, when displacing oil with gases, various modes of oil displacement can be realized. This article describes the results of studies carried out to study the effect of the concentration of carbon dioxide on the properties of high-viscosity oil in the Permo-Carboniferous Reservoir of the Usinskoye field, as well as the results of filtration experiments on slim models performed to assess the oil displacement regime under various temperature and pressure conditions of the Permo-Carboniferous Reservoir. The study of the influence of CO2 concentration on oil properties was carried out using the standard PVT research technique. The displacement mode was assessed using the slim-tube technique. Based on the performed experiments, it was established that an increase in the concentration of CO2 in high-viscosity oil led to a noticeable change in its properties; for the conditions of a Permo-Carboniferous Reservoir, the most probable mode of oil displacement by carbon dioxide was established. Difficulties associated with the preparation of the CO2-heavy oil system were described separately. Based on a literature review, it was shown that the rate of mixing of oil with carbon dioxide depended on certain conditions.


2012 ◽  
Vol 502 ◽  
pp. 179-183
Author(s):  
Hong Jing Zhang ◽  
Shuang Bo Dong ◽  
Zhe Kui Zheng

Aiming at the source and corrosiveness of carbon dioxide, the in-situ carbon dioxide generation technology to enhance oil recovery was proposed。This paper presents the in-situ carbon dioxide generation technology mechanism, the expansion, viscosity reduction; oil-displacement efficiency and foamy oil of this technology were experimentally evaluated by using microscopic models and physical models. The experimental results indicated that the in-situ carbon dioxide generation technology could be used to produce enough carbon dioxide and get good efficiencies of oil expansion, reduction of viscosity and enhancement of oil displacement. Under the conditions of 2010mPa•s in oil viscosity, 60°C and 10MPa, the volume of oil could be expanded by25%, and the viscosity of oil can reduced to 52.7% , and the CO2 can displacement,restraining viscous fingering and changing liquid flow direction and carrying the residual oil.


Sign in / Sign up

Export Citation Format

Share Document