Optimization of Surface Roughness Based on Multi-Linear Regression Model and Genetic Algorithm

2010 ◽  
Vol 97-101 ◽  
pp. 3050-3054
Author(s):  
Yong Zhi Pan ◽  
Jun Zhao ◽  
Xiu Li Fu ◽  
Xing Ai

During the high-speed milling operations of 7050-T7451 aluminum alloy using solid carbide end mills, helical angle, axial and radial depth-of-cut have significant effects on the milling uniformity. A surface roughness predictive model of work-piece was developed by using a full-factorial experimental design and multi-linear regression technology. Genetic algorithm was utilized to optimize the helical angle and cutting parameters by means of a series of operations of selection, crossover and mutation based on genetics. The result shows that it is possible to select optimum axial depth-of-cut, radial depth-of-cut and helical angle for obtaining minimum cutting force and reasonably good metal removal rate.

2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2011 ◽  
Vol 418-420 ◽  
pp. 1141-1147
Author(s):  
Yong Liu ◽  
Li Tang Zhang ◽  
Zhi Hong Xu

High-speed milling is recognized as one of rapidly development machining methods. The article gives details of machining experiments with different aluminum alloys. Through a lot of single factor experiments and the orthogonal multi-factor experiments, and also use method of semi-artificial thermocouple. This paper mainly studies influence of surface roughness and residual stress with changed rotate speed, tooth load and radial depth of cut, and changed law of processing temperature for rotate speed. Though experiments shows that enhancing rotate speed may reduce surface roughness and residual stress within certain limits and the result of experiments is not agree with Carl Salomon’s theory.


2014 ◽  
Vol 800-801 ◽  
pp. 613-618
Author(s):  
Lu Ning Liu ◽  
Zhen Yu Shi ◽  
Zhan Qiang Liu ◽  
Kai Feng Song

The work-piece surface quality reflects the cutting performance of face-milling cutter. This paper presents the development of an algorithm to predict work-piece surface roughness in face milling operation. The prediction model is based on the face milling cutter fixed square inserts with flat edges. The static prediction model considers the effects of radial and axial run-out error of inserts, feed per tooth, tooth number, cutting edge length, nose radius, main lead angle, and axial depth of cut. The dynamic prediction model considers the effects of the Z-axial relative displacement between the work-piece and cutting teeth caused by forced vibration. By combining the prediction results of static and dynamic models, the surface roughness of the work-piece in face milling is predicted.


2013 ◽  
Vol 446-447 ◽  
pp. 275-278 ◽  
Author(s):  
Mohammad Iqbal ◽  
Mohamed Konneh ◽  
Ahmad Yasir Bin Md Said ◽  
Azri Fadhlan Bin Mohd Zaini

The high speed milling of silicon carbide was discussed by using flat end-mill 2 mm in diameter diamond coated tool. Ultra-precision high speed spindle attachment was used to achieve cutting tool rotation speed as high as 50,000 rpm. Special fixture was designed to minimize the chatter on work-piece surface during the machining process. Three cutting parameters were selected as independent variables of the experiments. They were spindle speed, depth of cut and feed rate. The arithmetic mean value of roughness (Ra) was measured on the work-piece surface as the response of the experiment. Result of the experiment shows that the value of surface roughness can be achieved as low as 0.150 μm. Statistical analysis was provided to study the significant of the model, interaction among the cutting parameters and their effects to the surface roughness value.


2007 ◽  
Vol 24-25 ◽  
pp. 303-308
Author(s):  
Yong Zhi Pan ◽  
Xing Ai ◽  
Jun Zhao ◽  
G.Y. Li

In this paper, multi-linear regression and artificial neural network (ANN) models have been developed to predict surface roughness in high-speed milling of 7050-T7451 aluminum alloy. Surface roughness is taken as the response variable, while cutting speed, feed per tooth, radial depth of cut and slenderness ratio are taken as independent input parameters. An orthogonal experiment design is developed to conduct experiments. The measured values of surface roughness are used to find the regression coefficients and train the neural network for prediction of surface roughness. Predicted values of surface roughness by both models are compared with the measured values.


2011 ◽  
Vol 697-698 ◽  
pp. 49-52 ◽  
Author(s):  
Xiao Yong Yang ◽  
Cheng Zu Ren ◽  
Guang Chen ◽  
Bing Han ◽  
Y. Wang

This study focused on the side milling surface roughness of titanium alloy under various cooling strategies and cutting parameters. The experimental results show that the cooling strategies significantly affect the surface roughness in milling Ti-6Al-4V. Surface roughness (Ra) alterations are investigated. Cutting fluid strategy made nearly all the smallest and most stable roughness values. The surface roughness values produced by all cooling strategies are obviously affected by feed, radial depth-of-cut and cutting speed. However, axial depth-of-cut has little influence.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 73
Author(s):  
Mohd Shahfizal Mohd Ruslan ◽  
Haniff Abdul Rahman ◽  
Jaharah Abdul Ghani ◽  
Che Hassan Che Haron ◽  
Mohd Shahir Kassim ◽  
...  

Magnesium alloy is one of the lightest materials with a high strength to weight ratio and excellent machinability, which makes it attractive and suitable for various industrial applications such as automotive and aerospace components. For these particular industrial components, the end products require a mirror-like finish. This article details a statistical analysis about the effect of milling parameters on the surface roughness of Magnesium alloy AZ91D in the dry milling process. The historical data approach in the response surface methodology (RSM) was utilized to determine the cause and effect relationship between the input variables and output response. The effect of milling parameter studied was cutting speed (900 – 1400 m/min), feed rate (0.03 - 0.09 mm/tooth), and radial depth of cut (0.2 - 0.3 mm). The results confirmed that the interaction between feed rate and cutting speed is the primary factor controlling the surface evolution. The responses of various factors were plotted using a two-dimensional interaction graph and the cubic empirical model was developed at 95% confidence level. The optimum condition for achieving the minimum surface roughness was a cutting speed of 977 m/min, a feed rate of 0.02 mm/tooth, and an axial depth of cut of 0.29 mm. With this optimum condition, a surface arithmetic roughness of 0.054 μm is expected. This study confirmed that by milling AZ91D at high speed cutting, it is possible to eliminate the polishing process to achieve a super mirror-like finishing.


Sign in / Sign up

Export Citation Format

Share Document